L(s) = 1 | − 3i·3-s + 5i·7-s − 9·9-s − 14·11-s + i·13-s − 46i·17-s + 19·19-s + 15·21-s + 46i·23-s + 27i·27-s − 14·29-s − 133·31-s + 42i·33-s − 258i·37-s + 3·39-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + 0.269i·7-s − 0.333·9-s − 0.383·11-s + 0.0213i·13-s − 0.656i·17-s + 0.229·19-s + 0.155·21-s + 0.417i·23-s + 0.192i·27-s − 0.0896·29-s − 0.770·31-s + 0.221i·33-s − 1.14i·37-s + 0.0123·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.245673852\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.245673852\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + 3iT \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 5iT - 343T^{2} \) |
| 11 | \( 1 + 14T + 1.33e3T^{2} \) |
| 13 | \( 1 - iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 46iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 19T + 6.85e3T^{2} \) |
| 23 | \( 1 - 46iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 14T + 2.43e4T^{2} \) |
| 31 | \( 1 + 133T + 2.97e4T^{2} \) |
| 37 | \( 1 + 258iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 84T + 6.89e4T^{2} \) |
| 43 | \( 1 - 167iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 410iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 456iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 194T + 2.05e5T^{2} \) |
| 61 | \( 1 + 17T + 2.26e5T^{2} \) |
| 67 | \( 1 - 653iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 828T + 3.57e5T^{2} \) |
| 73 | \( 1 - 570iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 552T + 4.93e5T^{2} \) |
| 83 | \( 1 + 142iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 1.10e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 841iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.345351384744648606772442839705, −8.777134374669988223617351143887, −7.63425352151050579720158848178, −7.28703502884847903674895974005, −6.09493377238305412731079992222, −5.46025372065920046688909614585, −4.37812333010377834639422300518, −3.13964558403526928726489327418, −2.22803927767488163653189640446, −0.997453533672714072584271601255,
0.33226466449880231217591547039, 1.84938106257661067139180973486, 3.10458170886009886005081542092, 3.98829699584281758309677404845, 4.92064878766796327484429902369, 5.75688026059346262893877801932, 6.72043598227828869950645212363, 7.66770248606964398152314325281, 8.490078953783317211010443185000, 9.236608865731083763355389776747