| L(s)  = 1 | + (0.707 − 0.707i)2-s   + (0.707 − 0.707i)3-s   − 1.00i·4-s     − 1.00i·6-s     + (−0.707 − 0.707i)8-s   − 1.00i·9-s       + (−0.707 − 0.707i)12-s         − 1.00·16-s   + 1.41i·17-s   + (−0.707 − 0.707i)18-s   + (1 + i)19-s         − 1.41·23-s   − 1.00·24-s       + (−0.707 − 0.707i)27-s           + (−0.707 + 0.707i)32-s    + ⋯ | 
| L(s)  = 1 | + (0.707 − 0.707i)2-s   + (0.707 − 0.707i)3-s   − 1.00i·4-s     − 1.00i·6-s     + (−0.707 − 0.707i)8-s   − 1.00i·9-s       + (−0.707 − 0.707i)12-s         − 1.00·16-s   + 1.41i·17-s   + (−0.707 − 0.707i)18-s   + (1 + i)19-s         − 1.41·23-s   − 1.00·24-s       + (−0.707 − 0.707i)27-s           + (−0.707 + 0.707i)32-s    + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(\frac{1}{2})\) | \(\approx\) | \(1.817400993\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(1.817400993\) | 
    
        
      | \(L(1)\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 2 | \( 1 + (-0.707 + 0.707i)T \) | 
|  | 3 | \( 1 + (-0.707 + 0.707i)T \) | 
|  | 5 | \( 1 \) | 
| good | 7 | \( 1 - T^{2} \) | 
|  | 11 | \( 1 + iT^{2} \) | 
|  | 13 | \( 1 + iT^{2} \) | 
|  | 17 | \( 1 - 1.41iT - T^{2} \) | 
|  | 19 | \( 1 + (-1 - i)T + iT^{2} \) | 
|  | 23 | \( 1 + 1.41T + T^{2} \) | 
|  | 29 | \( 1 - iT^{2} \) | 
|  | 31 | \( 1 + T^{2} \) | 
|  | 37 | \( 1 - iT^{2} \) | 
|  | 41 | \( 1 + T^{2} \) | 
|  | 43 | \( 1 - iT^{2} \) | 
|  | 47 | \( 1 + 1.41iT - T^{2} \) | 
|  | 53 | \( 1 + iT^{2} \) | 
|  | 59 | \( 1 + iT^{2} \) | 
|  | 61 | \( 1 + (-1 - i)T + iT^{2} \) | 
|  | 67 | \( 1 + iT^{2} \) | 
|  | 71 | \( 1 + T^{2} \) | 
|  | 73 | \( 1 - T^{2} \) | 
|  | 79 | \( 1 + 2T + T^{2} \) | 
|  | 83 | \( 1 - iT^{2} \) | 
|  | 89 | \( 1 + T^{2} \) | 
|  | 97 | \( 1 + T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−9.941308522609251798665432272118, −8.873904816791285466931594360543, −8.123330196420296618394460095524, −7.17941249348476041711943969770, −6.16401463795883761344139401552, −5.57226206177328113976871753949, −4.08158034082665512924573218032, −3.52839064144937048498977292805, −2.32311407062823274440728446077, −1.41653257128971909545445554546, 
2.44930427984677945439635248465, 3.24688955565716854955685822371, 4.27611281541011731829627389402, 4.99501247829726113877168130486, 5.82370807001801801500211143230, 7.05560212437867572219302770829, 7.63820609103880437956876881908, 8.503495125939194254862027939810, 9.301993950216402422605559432622, 9.911921954395199987151131381259
