Properties

Label 1200.701
Modulus $1200$
Conductor $48$
Order $4$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1200, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([0,3,2,0]))
 
Copy content pari:[g,chi] = znchar(Mod(701,1200))
 

Basic properties

Modulus: \(1200\)
Conductor: \(48\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(4\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{48}(29,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1200.r

\(\chi_{1200}(101,\cdot)\) \(\chi_{1200}(701,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.0.18432.2

Values on generators

\((751,901,401,577)\) → \((1,-i,-1,1)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 1200 }(701, a) \) \(-1\)\(1\)\(-1\)\(i\)\(i\)\(-1\)\(i\)\(1\)\(-i\)\(1\)\(-i\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1200 }(701,a) \;\) at \(\;a = \) e.g. 2