L(s) = 1 | + i·2-s + 3-s − 4-s + i·6-s − i·8-s + 9-s − 12-s + 16-s + (−1 + i)17-s + i·18-s + (1 + i)19-s + (1 + i)23-s − i·24-s + 27-s − 2i·31-s + i·32-s + ⋯ |
L(s) = 1 | + i·2-s + 3-s − 4-s + i·6-s − i·8-s + 9-s − 12-s + 16-s + (−1 + i)17-s + i·18-s + (1 + i)19-s + (1 + i)23-s − i·24-s + 27-s − 2i·31-s + i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.160 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.160 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.350641146\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.350641146\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 - iT^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + (1 - i)T - iT^{2} \) |
| 19 | \( 1 + (-1 - i)T + iT^{2} \) |
| 23 | \( 1 + (-1 - i)T + iT^{2} \) |
| 29 | \( 1 + iT^{2} \) |
| 31 | \( 1 + 2iT - T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (1 + i)T + iT^{2} \) |
| 53 | \( 1 + 2T + T^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + (1 + i)T + iT^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.637450906837677117328221248887, −9.300539497930004516676687139493, −8.247735040832911389963267419658, −7.83577268762492082612155695589, −6.95283442066884362235293910954, −6.10109183576918176047941115420, −5.05842061467781748152997708081, −4.04498607870832072719601098739, −3.29278018354920551342566757020, −1.69184890118543220032359375778,
1.33429735571287586165829232487, 2.73250934799959549399788528511, 3.13171738102636819442293293872, 4.54017112006405775258489095369, 4.96134257722837535038927549667, 6.63549712264577725856802319743, 7.47034110889831128408493898925, 8.473306196265106933400171872393, 9.143732979727727472447007248396, 9.552912523416957621137522193713