sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1200, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([2,3,2,1]))
pari:[g,chi] = znchar(Mod(707,1200))
\(\chi_{1200}(443,\cdot)\)
\(\chi_{1200}(707,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((751,901,401,577)\) → \((-1,-i,-1,i)\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 1200 }(707, a) \) |
\(-1\) | \(1\) | \(i\) | \(-i\) | \(1\) | \(-i\) | \(i\) | \(i\) | \(i\) | \(-1\) | \(1\) | \(1\) |
sage:chi.jacobi_sum(n)