Properties

Label 2-120-120.59-c3-0-46
Degree 22
Conductor 120120
Sign 0.899+0.437i0.899 + 0.437i
Analytic cond. 7.080227.08022
Root an. cond. 2.660872.66087
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.22 + 1.74i)2-s + (4.99 − 1.43i)3-s + (1.93 − 7.76i)4-s + (10.2 − 4.55i)5-s + (−8.63 + 11.8i)6-s − 3.90·7-s + (9.22 + 20.6i)8-s + (22.9 − 14.2i)9-s + (−14.8 + 27.9i)10-s − 59.1i·11-s + (−1.45 − 41.5i)12-s − 63.6·13-s + (8.70 − 6.80i)14-s + (44.5 − 37.3i)15-s + (−56.5 − 29.9i)16-s + 69.6·17-s + ⋯
L(s)  = 1  + (−0.787 + 0.615i)2-s + (0.961 − 0.275i)3-s + (0.241 − 0.970i)4-s + (0.913 − 0.407i)5-s + (−0.587 + 0.808i)6-s − 0.210·7-s + (0.407 + 0.913i)8-s + (0.848 − 0.529i)9-s + (−0.468 + 0.883i)10-s − 1.62i·11-s + (−0.0350 − 0.999i)12-s − 1.35·13-s + (0.166 − 0.129i)14-s + (0.765 − 0.642i)15-s + (−0.883 − 0.468i)16-s + 0.993·17-s + ⋯

Functional equation

Λ(s)=(120s/2ΓC(s)L(s)=((0.899+0.437i)Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.899 + 0.437i)\, \overline{\Lambda}(4-s) \end{aligned}
Λ(s)=(120s/2ΓC(s+3/2)L(s)=((0.899+0.437i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.899 + 0.437i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 120120    =    23352^{3} \cdot 3 \cdot 5
Sign: 0.899+0.437i0.899 + 0.437i
Analytic conductor: 7.080227.08022
Root analytic conductor: 2.660872.66087
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: χ120(59,)\chi_{120} (59, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 120, ( :3/2), 0.899+0.437i)(2,\ 120,\ (\ :3/2),\ 0.899 + 0.437i)

Particular Values

L(2)L(2) \approx 1.637000.377150i1.63700 - 0.377150i
L(12)L(\frac12) \approx 1.637000.377150i1.63700 - 0.377150i
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(2.221.74i)T 1 + (2.22 - 1.74i)T
3 1+(4.99+1.43i)T 1 + (-4.99 + 1.43i)T
5 1+(10.2+4.55i)T 1 + (-10.2 + 4.55i)T
good7 1+3.90T+343T2 1 + 3.90T + 343T^{2}
11 1+59.1iT1.33e3T2 1 + 59.1iT - 1.33e3T^{2}
13 1+63.6T+2.19e3T2 1 + 63.6T + 2.19e3T^{2}
17 169.6T+4.91e3T2 1 - 69.6T + 4.91e3T^{2}
19 133.0T+6.85e3T2 1 - 33.0T + 6.85e3T^{2}
23 190.6iT1.21e4T2 1 - 90.6iT - 1.21e4T^{2}
29 1172.T+2.43e4T2 1 - 172.T + 2.43e4T^{2}
31 161.7iT2.97e4T2 1 - 61.7iT - 2.97e4T^{2}
37 1+10.7T+5.06e4T2 1 + 10.7T + 5.06e4T^{2}
41 1475.iT6.89e4T2 1 - 475. iT - 6.89e4T^{2}
43 1+59.3iT7.95e4T2 1 + 59.3iT - 7.95e4T^{2}
47 1+500.iT1.03e5T2 1 + 500. iT - 1.03e5T^{2}
53 1407.iT1.48e5T2 1 - 407. iT - 1.48e5T^{2}
59 1+17.5iT2.05e5T2 1 + 17.5iT - 2.05e5T^{2}
61 1245.iT2.26e5T2 1 - 245. iT - 2.26e5T^{2}
67 1+35.7iT3.00e5T2 1 + 35.7iT - 3.00e5T^{2}
71 1+889.T+3.57e5T2 1 + 889.T + 3.57e5T^{2}
73 1617.iT3.89e5T2 1 - 617. iT - 3.89e5T^{2}
79 1108.iT4.93e5T2 1 - 108. iT - 4.93e5T^{2}
83 1628.T+5.71e5T2 1 - 628.T + 5.71e5T^{2}
89 1763.iT7.04e5T2 1 - 763. iT - 7.04e5T^{2}
97 1866.iT9.12e5T2 1 - 866. iT - 9.12e5T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−13.33681925814338100377030419994, −11.92919976279237434685675203728, −10.25096383244273982131327264885, −9.561626541520517746616881881407, −8.632919703550976925991612707331, −7.69891618505883990576151267931, −6.42120987938071030070196638044, −5.23016225755894433842262366308, −2.84992829403550152452827838066, −1.14209744345640055116672406334, 1.93594762501469443151782267647, 2.93539915300381312828840112577, 4.67435938180775282412564267015, 6.93630519622823263543105364278, 7.75192951867439789143875339914, 9.225869662039419968322632749915, 9.904106841577495052725996698224, 10.38133382949822126844191902628, 12.19268792440616040104525666688, 12.85845953116340891770256258454

Graph of the ZZ-function along the critical line