# Properties

 Label 120.59 Modulus $120$ Conductor $120$ Order $2$ Real yes Primitive yes Minimal yes Parity even

# Related objects

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(120, base_ring=CyclotomicField(2))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([1,1,1,1]))

pari: [g,chi] = znchar(Mod(59,120))

## Kronecker symbol representation

sage: kronecker_character(120)

pari: znchartokronecker(g,chi)

$$\displaystyle\left(\frac{120}{\bullet}\right)$$

## Basic properties

 Modulus: $$120$$ Conductor: $$120$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$2$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: yes Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 120.m

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q$$ Fixed field: $$\Q(\sqrt{30})$$

## Values on generators

$$(31,61,41,97)$$ → $$(-1,-1,-1,-1)$$

## Values

 $$a$$ $$-1$$ $$1$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$29$$ $$31$$ $$37$$ $$41$$ $$\chi_{ 120 }(59, a)$$ $$1$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$1$$ $$-1$$
sage: chi.jacobi_sum(n)

$$\chi_{ 120 }(59,a) \;$$ at $$\;a =$$ e.g. 2

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 120 }(59,·) )\;$$ at $$\;a =$$ e.g. 2

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 120 }(59,·),\chi_{ 120 }(n,·)) \;$$ for $$\; n =$$ e.g. 1

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 120 }(59,·)) \;$$ at $$\; a,b =$$ e.g. 1,2