L(s) = 1 | + (−2.22 − 1.74i)2-s + (4.99 − 1.43i)3-s + (1.93 + 7.76i)4-s + (−10.2 + 4.55i)5-s + (−13.6 − 5.51i)6-s + 3.90·7-s + (9.22 − 20.6i)8-s + (22.9 − 14.2i)9-s + (30.6 + 7.64i)10-s − 59.1i·11-s + (20.7 + 36.0i)12-s + 63.6·13-s + (−8.70 − 6.80i)14-s + (−44.5 + 37.3i)15-s + (−56.5 + 29.9i)16-s + 69.6·17-s + ⋯ |
L(s) = 1 | + (−0.787 − 0.615i)2-s + (0.961 − 0.275i)3-s + (0.241 + 0.970i)4-s + (−0.913 + 0.407i)5-s + (−0.926 − 0.375i)6-s + 0.210·7-s + (0.407 − 0.913i)8-s + (0.848 − 0.529i)9-s + (0.970 + 0.241i)10-s − 1.62i·11-s + (0.499 + 0.866i)12-s + 1.35·13-s + (−0.166 − 0.129i)14-s + (−0.765 + 0.642i)15-s + (−0.883 + 0.468i)16-s + 0.993·17-s + ⋯ |
Λ(s)=(=(120s/2ΓC(s)L(s)(0.274+0.961i)Λ(4−s)
Λ(s)=(=(120s/2ΓC(s+3/2)L(s)(0.274+0.961i)Λ(1−s)
Degree: |
2 |
Conductor: |
120
= 23⋅3⋅5
|
Sign: |
0.274+0.961i
|
Analytic conductor: |
7.08022 |
Root analytic conductor: |
2.66087 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ120(59,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 120, ( :3/2), 0.274+0.961i)
|
Particular Values
L(2) |
≈ |
1.11611−0.841709i |
L(21) |
≈ |
1.11611−0.841709i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2.22+1.74i)T |
| 3 | 1+(−4.99+1.43i)T |
| 5 | 1+(10.2−4.55i)T |
good | 7 | 1−3.90T+343T2 |
| 11 | 1+59.1iT−1.33e3T2 |
| 13 | 1−63.6T+2.19e3T2 |
| 17 | 1−69.6T+4.91e3T2 |
| 19 | 1−33.0T+6.85e3T2 |
| 23 | 1+90.6iT−1.21e4T2 |
| 29 | 1+172.T+2.43e4T2 |
| 31 | 1+61.7iT−2.97e4T2 |
| 37 | 1−10.7T+5.06e4T2 |
| 41 | 1−475.iT−6.89e4T2 |
| 43 | 1+59.3iT−7.95e4T2 |
| 47 | 1−500.iT−1.03e5T2 |
| 53 | 1+407.iT−1.48e5T2 |
| 59 | 1+17.5iT−2.05e5T2 |
| 61 | 1+245.iT−2.26e5T2 |
| 67 | 1+35.7iT−3.00e5T2 |
| 71 | 1−889.T+3.57e5T2 |
| 73 | 1−617.iT−3.89e5T2 |
| 79 | 1+108.iT−4.93e5T2 |
| 83 | 1−628.T+5.71e5T2 |
| 89 | 1−763.iT−7.04e5T2 |
| 97 | 1−866.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.71679568278368720517651578166, −11.47467633593362322027855479364, −10.85585771542719559912010718294, −9.455992026320920378205026907691, −8.252175287434550092908911758023, −7.982991884679194434209737880894, −6.48804389793244257029926575495, −3.79506748721267942519844160594, −3.05070279986755862695519478143, −1.01200754009842438148616136250,
1.57106548915839942776122218170, 3.80572968340200023170056499490, 5.20489421087130044160239080381, 7.18181312590591652066989425360, 7.83572260521266257542564960635, 8.841816852474679430827210854380, 9.715842443971129840650637546424, 10.83413012643085445710599155825, 12.13481544873146718119826027817, 13.44497706955114544141324777027