L(s) = 1 | + (−2.22 − 1.74i)2-s + (4.99 − 1.43i)3-s + (1.93 + 7.76i)4-s + (−10.2 + 4.55i)5-s + (−13.6 − 5.51i)6-s + 3.90·7-s + (9.22 − 20.6i)8-s + (22.9 − 14.2i)9-s + (30.6 + 7.64i)10-s − 59.1i·11-s + (20.7 + 36.0i)12-s + 63.6·13-s + (−8.70 − 6.80i)14-s + (−44.5 + 37.3i)15-s + (−56.5 + 29.9i)16-s + 69.6·17-s + ⋯ |
L(s) = 1 | + (−0.787 − 0.615i)2-s + (0.961 − 0.275i)3-s + (0.241 + 0.970i)4-s + (−0.913 + 0.407i)5-s + (−0.926 − 0.375i)6-s + 0.210·7-s + (0.407 − 0.913i)8-s + (0.848 − 0.529i)9-s + (0.970 + 0.241i)10-s − 1.62i·11-s + (0.499 + 0.866i)12-s + 1.35·13-s + (−0.166 − 0.129i)14-s + (−0.765 + 0.642i)15-s + (−0.883 + 0.468i)16-s + 0.993·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.274 + 0.961i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.274 + 0.961i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.11611 - 0.841709i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.11611 - 0.841709i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2.22 + 1.74i)T \) |
| 3 | \( 1 + (-4.99 + 1.43i)T \) |
| 5 | \( 1 + (10.2 - 4.55i)T \) |
good | 7 | \( 1 - 3.90T + 343T^{2} \) |
| 11 | \( 1 + 59.1iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 63.6T + 2.19e3T^{2} \) |
| 17 | \( 1 - 69.6T + 4.91e3T^{2} \) |
| 19 | \( 1 - 33.0T + 6.85e3T^{2} \) |
| 23 | \( 1 + 90.6iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 172.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 61.7iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 10.7T + 5.06e4T^{2} \) |
| 41 | \( 1 - 475. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 59.3iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 500. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 407. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 17.5iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 245. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 35.7iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 889.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 617. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 108. iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 628.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 763. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 866. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.71679568278368720517651578166, −11.47467633593362322027855479364, −10.85585771542719559912010718294, −9.455992026320920378205026907691, −8.252175287434550092908911758023, −7.982991884679194434209737880894, −6.48804389793244257029926575495, −3.79506748721267942519844160594, −3.05070279986755862695519478143, −1.01200754009842438148616136250,
1.57106548915839942776122218170, 3.80572968340200023170056499490, 5.20489421087130044160239080381, 7.18181312590591652066989425360, 7.83572260521266257542564960635, 8.841816852474679430827210854380, 9.715842443971129840650637546424, 10.83413012643085445710599155825, 12.13481544873146718119826027817, 13.44497706955114544141324777027