L(s) = 1 | + (−1.65 + 2.29i)2-s + (−4.82 − 1.93i)3-s + (−2.51 − 7.59i)4-s + (−7.20 + 8.54i)5-s + (12.4 − 7.85i)6-s − 30.0·7-s + (21.5 + 6.82i)8-s + (19.5 + 18.6i)9-s + (−7.65 − 30.6i)10-s − 35.6i·11-s + (−2.55 + 41.4i)12-s + 58.6·13-s + (49.7 − 68.8i)14-s + (51.2 − 27.3i)15-s + (−51.3 + 38.1i)16-s − 14.3·17-s + ⋯ |
L(s) = 1 | + (−0.585 + 0.810i)2-s + (−0.928 − 0.371i)3-s + (−0.313 − 0.949i)4-s + (−0.644 + 0.764i)5-s + (0.845 − 0.534i)6-s − 1.62·7-s + (0.953 + 0.301i)8-s + (0.723 + 0.690i)9-s + (−0.242 − 0.970i)10-s − 0.976i·11-s + (−0.0615 + 0.998i)12-s + 1.25·13-s + (0.950 − 1.31i)14-s + (0.882 − 0.470i)15-s + (−0.803 + 0.595i)16-s − 0.205·17-s + ⋯ |
Λ(s)=(=(120s/2ΓC(s)L(s)(0.983−0.181i)Λ(4−s)
Λ(s)=(=(120s/2ΓC(s+3/2)L(s)(0.983−0.181i)Λ(1−s)
Degree: |
2 |
Conductor: |
120
= 23⋅3⋅5
|
Sign: |
0.983−0.181i
|
Analytic conductor: |
7.08022 |
Root analytic conductor: |
2.66087 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ120(59,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 120, ( :3/2), 0.983−0.181i)
|
Particular Values
L(2) |
≈ |
0.528058+0.0484124i |
L(21) |
≈ |
0.528058+0.0484124i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.65−2.29i)T |
| 3 | 1+(4.82+1.93i)T |
| 5 | 1+(7.20−8.54i)T |
good | 7 | 1+30.0T+343T2 |
| 11 | 1+35.6iT−1.33e3T2 |
| 13 | 1−58.6T+2.19e3T2 |
| 17 | 1+14.3T+4.91e3T2 |
| 19 | 1−106.T+6.85e3T2 |
| 23 | 1−47.7iT−1.21e4T2 |
| 29 | 1−49.5T+2.43e4T2 |
| 31 | 1−181.iT−2.97e4T2 |
| 37 | 1−113.T+5.06e4T2 |
| 41 | 1−53.6iT−6.89e4T2 |
| 43 | 1+490.iT−7.95e4T2 |
| 47 | 1+441.iT−1.03e5T2 |
| 53 | 1+65.6iT−1.48e5T2 |
| 59 | 1+406.iT−2.05e5T2 |
| 61 | 1−213.iT−2.26e5T2 |
| 67 | 1−825.iT−3.00e5T2 |
| 71 | 1−157.T+3.57e5T2 |
| 73 | 1−242.iT−3.89e5T2 |
| 79 | 1−107.iT−4.93e5T2 |
| 83 | 1−1.15e3T+5.71e5T2 |
| 89 | 1+750.iT−7.04e5T2 |
| 97 | 1+83.2iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.24149488446692525184115346236, −11.78162359550188760334390324906, −10.82209424358109925379038392889, −9.972763876660120861080732307689, −8.590285000359589609247597982174, −7.22593381605970798868260280741, −6.49268083037701251169662602749, −5.64231614543152652089393671086, −3.54487127250043970902043184477, −0.59675902356634427387737661191,
0.849518751891917636464977430070, 3.44572051937694015522049235705, 4.54231963217077823280862609900, 6.28957770951676946223575063374, 7.62827230000392002197237700592, 9.223594630287705607433450124150, 9.737015455660715415267895532556, 10.93147736585823441157586337263, 11.90838279775828522299163628135, 12.67027076261770106514884958124