L(s) = 1 | + (−2.12 + 1.86i)2-s + (0.659 + 5.15i)3-s + (1.02 − 7.93i)4-s + (10.6 + 3.40i)5-s + (−11.0 − 9.71i)6-s − 28.2·7-s + (12.6 + 18.7i)8-s + (−26.1 + 6.79i)9-s + (−28.9 + 12.6i)10-s + 38.5i·11-s + (41.5 + 0.0568i)12-s + 36.1·13-s + (60.0 − 52.7i)14-s + (−10.5 + 57.1i)15-s + (−61.8 − 16.2i)16-s − 74.9·17-s + ⋯ |
L(s) = 1 | + (−0.751 + 0.660i)2-s + (0.126 + 0.991i)3-s + (0.128 − 0.991i)4-s + (0.952 + 0.304i)5-s + (−0.750 − 0.661i)6-s − 1.52·7-s + (0.558 + 0.829i)8-s + (−0.967 + 0.251i)9-s + (−0.916 + 0.400i)10-s + 1.05i·11-s + (0.999 + 0.00136i)12-s + 0.772·13-s + (1.14 − 1.00i)14-s + (−0.180 + 0.983i)15-s + (−0.967 − 0.254i)16-s − 1.06·17-s + ⋯ |
Λ(s)=(=(120s/2ΓC(s)L(s)(−0.916+0.399i)Λ(4−s)
Λ(s)=(=(120s/2ΓC(s+3/2)L(s)(−0.916+0.399i)Λ(1−s)
Degree: |
2 |
Conductor: |
120
= 23⋅3⋅5
|
Sign: |
−0.916+0.399i
|
Analytic conductor: |
7.08022 |
Root analytic conductor: |
2.66087 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ120(59,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 120, ( :3/2), −0.916+0.399i)
|
Particular Values
L(2) |
≈ |
0.131671−0.632380i |
L(21) |
≈ |
0.131671−0.632380i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2.12−1.86i)T |
| 3 | 1+(−0.659−5.15i)T |
| 5 | 1+(−10.6−3.40i)T |
good | 7 | 1+28.2T+343T2 |
| 11 | 1−38.5iT−1.33e3T2 |
| 13 | 1−36.1T+2.19e3T2 |
| 17 | 1+74.9T+4.91e3T2 |
| 19 | 1+136.T+6.85e3T2 |
| 23 | 1+114.iT−1.21e4T2 |
| 29 | 1−109.T+2.43e4T2 |
| 31 | 1−57.1iT−2.97e4T2 |
| 37 | 1+100.T+5.06e4T2 |
| 41 | 1−173.iT−6.89e4T2 |
| 43 | 1−86.0iT−7.95e4T2 |
| 47 | 1−239.iT−1.03e5T2 |
| 53 | 1−476.iT−1.48e5T2 |
| 59 | 1−762.iT−2.05e5T2 |
| 61 | 1+614.iT−2.26e5T2 |
| 67 | 1−382.iT−3.00e5T2 |
| 71 | 1−124.T+3.57e5T2 |
| 73 | 1+267.iT−3.89e5T2 |
| 79 | 1−586.iT−4.93e5T2 |
| 83 | 1−282.T+5.71e5T2 |
| 89 | 1−604.iT−7.04e5T2 |
| 97 | 1−1.04e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.81924295120473536523271192532, −12.77724708226569472123106738543, −10.78778758088421143630319141809, −10.24801366798614294425690673004, −9.368029222576211383134809561871, −8.645828354749741486238602958082, −6.67882061837249418587286764305, −6.13794946534348612098693464191, −4.50794006113644358474796734920, −2.49609643084857185970011568461,
0.39898368801665136970311037706, 2.09516696493404696789250174841, 3.42578455494788371976579617421, 6.10250121045089211593084364411, 6.76159578621633473742073865639, 8.513759897983760355415093670534, 9.033414444035140527576951093391, 10.27103295859436123264563734417, 11.32844545252836352191000080350, 12.64847753048013864472904258903