L(s) = 1 | + 3-s + 5-s + 9-s − 4·11-s + 6·13-s + 15-s − 6·17-s − 4·19-s + 25-s + 27-s − 2·29-s − 8·31-s − 4·33-s − 2·37-s + 6·39-s − 6·41-s + 12·43-s + 45-s + 8·47-s − 7·49-s − 6·51-s + 6·53-s − 4·55-s − 4·57-s + 12·59-s + 14·61-s + 6·65-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.447·5-s + 1/3·9-s − 1.20·11-s + 1.66·13-s + 0.258·15-s − 1.45·17-s − 0.917·19-s + 1/5·25-s + 0.192·27-s − 0.371·29-s − 1.43·31-s − 0.696·33-s − 0.328·37-s + 0.960·39-s − 0.937·41-s + 1.82·43-s + 0.149·45-s + 1.16·47-s − 49-s − 0.840·51-s + 0.824·53-s − 0.539·55-s − 0.529·57-s + 1.56·59-s + 1.79·61-s + 0.744·65-s + ⋯ |
Λ(s)=(=(120s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(120s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.269494277 |
L(21) |
≈ |
1.269494277 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 5 | 1−T |
good | 7 | 1+pT2 |
| 11 | 1+4T+pT2 |
| 13 | 1−6T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1+4T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+2T+pT2 |
| 31 | 1+8T+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1+6T+pT2 |
| 43 | 1−12T+pT2 |
| 47 | 1−8T+pT2 |
| 53 | 1−6T+pT2 |
| 59 | 1−12T+pT2 |
| 61 | 1−14T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1−8T+pT2 |
| 73 | 1+6T+pT2 |
| 79 | 1+8T+pT2 |
| 83 | 1+12T+pT2 |
| 89 | 1−10T+pT2 |
| 97 | 1−2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.23486091060546125236692720333, −13.00221841062232627578538988126, −11.15225413084276142148114637688, −10.45550448318589263597286780431, −9.042960162718976648409639393560, −8.323057177226078640880314002796, −6.89270810769313104844169224865, −5.59585158632682227968586342616, −3.95303834850677407956821293662, −2.25002432004047770108316173263,
2.25002432004047770108316173263, 3.95303834850677407956821293662, 5.59585158632682227968586342616, 6.89270810769313104844169224865, 8.323057177226078640880314002796, 9.042960162718976648409639393560, 10.45550448318589263597286780431, 11.15225413084276142148114637688, 13.00221841062232627578538988126, 13.23486091060546125236692720333