# Properties

 Label 2.2.40.1-360.1-p Base field $$\Q(\sqrt{10})$$ Weight $[2, 2]$ Level norm $360$ Level $[360, 60, 6w]$ Dimension $1$ CM no Base change yes

# Learn more

## Base field $$\Q(\sqrt{10})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 10$$; narrow class number $$2$$ and class number $$2$$.

## Form

 Weight: $[2, 2]$ Level: $[360, 60, 6w]$ Dimension: $1$ CM: no Base change: yes Newspace dimension: $56$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w]$ $\phantom{-}0$
3 $[3, 3, w + 1]$ $\phantom{-}1$
3 $[3, 3, w + 2]$ $\phantom{-}1$
5 $[5, 5, w]$ $\phantom{-}1$
13 $[13, 13, w + 6]$ $\phantom{-}6$
13 $[13, 13, w + 7]$ $\phantom{-}6$
31 $[31, 31, -2w + 3]$ $-8$
31 $[31, 31, 2w + 3]$ $-8$
37 $[37, 37, w + 11]$ $-2$
37 $[37, 37, w + 26]$ $-2$
41 $[41, 41, 3w + 7]$ $-6$
41 $[41, 41, -3w + 7]$ $-6$
43 $[43, 43, w + 15]$ $\phantom{-}12$
43 $[43, 43, w + 28]$ $\phantom{-}12$
49 $[49, 7, -7]$ $-14$
53 $[53, 53, w + 13]$ $\phantom{-}6$
53 $[53, 53, w + 40]$ $\phantom{-}6$
67 $[67, 67, w + 12]$ $\phantom{-}4$
67 $[67, 67, w + 55]$ $\phantom{-}4$
71 $[71, 71, -w - 9]$ $\phantom{-}8$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, w]$ $-1$
$3$ $[3, 3, w + 1]$ $-1$
$3$ $[3, 3, w + 2]$ $-1$
$5$ $[5, 5, w]$ $-1$