L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s + i·5-s + (3.84 − 2.21i)7-s − 0.999i·8-s + (0.5 − 0.866i)10-s + (2.59 + 1.5i)11-s + (2.84 + 2.21i)13-s − 4.43·14-s + (−0.5 + 0.866i)16-s + (0.842 − 0.486i)19-s + (−0.866 + 0.499i)20-s + (−1.5 − 2.59i)22-s + (0.379 − 0.657i)23-s − 25-s + (−1.35 − 3.34i)26-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.249 + 0.433i)4-s + 0.447i·5-s + (1.45 − 0.838i)7-s − 0.353i·8-s + (0.158 − 0.273i)10-s + (0.783 + 0.452i)11-s + (0.788 + 0.615i)13-s − 1.18·14-s + (−0.125 + 0.216i)16-s + (0.193 − 0.111i)19-s + (−0.193 + 0.111i)20-s + (−0.319 − 0.553i)22-s + (0.0791 − 0.137i)23-s − 0.200·25-s + (−0.265 − 0.655i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 + 0.125i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.992 + 0.125i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.559724534\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.559724534\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 - iT \) |
| 13 | \( 1 + (-2.84 - 2.21i)T \) |
good | 7 | \( 1 + (-3.84 + 2.21i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.59 - 1.5i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.842 + 0.486i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.379 + 0.657i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.81 - 8.34i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 6.16iT - 31T^{2} \) |
| 37 | \( 1 + (1.5 + 0.866i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (5.19 + 3i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.34 - 2.32i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 3iT - 47T^{2} \) |
| 53 | \( 1 - 4.43T + 53T^{2} \) |
| 59 | \( 1 + (-4.05 + 2.34i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.68 - 9.84i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-10.6 - 6.16i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-5.19 + 3i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 6.92iT - 73T^{2} \) |
| 79 | \( 1 + 6.68T + 79T^{2} \) |
| 83 | \( 1 - 9.36iT - 83T^{2} \) |
| 89 | \( 1 + (6.65 + 3.84i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.68 + 2.70i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.839672127844626565410894182633, −8.887230522181052055562922382729, −8.255268552148836317586718646947, −7.23425286405169361833810798056, −6.86876107341944414811075750891, −5.49325763865221929807534471098, −4.30715323745802523826930172262, −3.65501005400278071696416560907, −2.06493655406741470529516684068, −1.20601722267894220058446654564,
1.08435929552121931410177555943, 2.08907881717467205612800350218, 3.64967140285473318445297282910, 4.90575490707453041935154305430, 5.60008018084159351496661749090, 6.39424932582709419750389020508, 7.62501346939517280061317905574, 8.323431649905888407106158146703, 8.745327812951491688862323671252, 9.563059426008867562105157385443