L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s − i·5-s + (3.84 + 2.21i)7-s + 0.999i·8-s + (0.5 + 0.866i)10-s + (2.59 − 1.5i)11-s + (2.84 − 2.21i)13-s − 4.43·14-s + (−0.5 − 0.866i)16-s + (0.842 + 0.486i)19-s + (−0.866 − 0.499i)20-s + (−1.5 + 2.59i)22-s + (0.379 + 0.657i)23-s − 25-s + (−1.35 + 3.34i)26-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s − 0.447i·5-s + (1.45 + 0.838i)7-s + 0.353i·8-s + (0.158 + 0.273i)10-s + (0.783 − 0.452i)11-s + (0.788 − 0.615i)13-s − 1.18·14-s + (−0.125 − 0.216i)16-s + (0.193 + 0.111i)19-s + (−0.193 − 0.111i)20-s + (−0.319 + 0.553i)22-s + (0.0791 + 0.137i)23-s − 0.200·25-s + (−0.265 + 0.655i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 - 0.125i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.992 - 0.125i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.559724534\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.559724534\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 13 | \( 1 + (-2.84 + 2.21i)T \) |
good | 7 | \( 1 + (-3.84 - 2.21i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.59 + 1.5i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.842 - 0.486i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.379 - 0.657i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (4.81 + 8.34i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 6.16iT - 31T^{2} \) |
| 37 | \( 1 + (1.5 - 0.866i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (5.19 - 3i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.34 + 2.32i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 3iT - 47T^{2} \) |
| 53 | \( 1 - 4.43T + 53T^{2} \) |
| 59 | \( 1 + (-4.05 - 2.34i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.68 + 9.84i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-10.6 + 6.16i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-5.19 - 3i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 6.92iT - 73T^{2} \) |
| 79 | \( 1 + 6.68T + 79T^{2} \) |
| 83 | \( 1 + 9.36iT - 83T^{2} \) |
| 89 | \( 1 + (6.65 - 3.84i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.68 - 2.70i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.563059426008867562105157385443, −8.745327812951491688862323671252, −8.323431649905888407106158146703, −7.62501346939517280061317905574, −6.39424932582709419750389020508, −5.60008018084159351496661749090, −4.90575490707453041935154305430, −3.64967140285473318445297282910, −2.08907881717467205612800350218, −1.08435929552121931410177555943,
1.20601722267894220058446654564, 2.06493655406741470529516684068, 3.65501005400278071696416560907, 4.30715323745802523826930172262, 5.49325763865221929807534471098, 6.86876107341944414811075750891, 7.23425286405169361833810798056, 8.255268552148836317586718646947, 8.887230522181052055562922382729, 9.839672127844626565410894182633