L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + i·5-s + (−3.45 − 1.99i)7-s − 0.999i·8-s + (0.5 + 0.866i)10-s + (−0.142 + 0.0820i)11-s + (1.50 − 3.27i)13-s − 3.99·14-s + (−0.5 − 0.866i)16-s + (−0.783 + 1.35i)17-s + (−0.716 − 0.413i)19-s + (0.866 + 0.499i)20-s + (−0.0820 + 0.142i)22-s + (−3.49 − 6.05i)23-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (0.249 − 0.433i)4-s + 0.447i·5-s + (−1.30 − 0.754i)7-s − 0.353i·8-s + (0.158 + 0.273i)10-s + (−0.0428 + 0.0247i)11-s + (0.418 − 0.908i)13-s − 1.06·14-s + (−0.125 − 0.216i)16-s + (−0.190 + 0.329i)17-s + (−0.164 − 0.0948i)19-s + (0.193 + 0.111i)20-s + (−0.0175 + 0.0303i)22-s + (−0.728 − 1.26i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.823 + 0.566i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.823 + 0.566i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.225935568\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.225935568\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 - iT \) |
| 13 | \( 1 + (-1.50 + 3.27i)T \) |
good | 7 | \( 1 + (3.45 + 1.99i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.142 - 0.0820i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (0.783 - 1.35i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.716 + 0.413i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.49 + 6.05i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2.92 + 5.06i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 0.0858iT - 31T^{2} \) |
| 37 | \( 1 + (7.24 - 4.18i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (7.48 - 4.32i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.62 + 9.74i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 5.31iT - 47T^{2} \) |
| 53 | \( 1 + 10.3T + 53T^{2} \) |
| 59 | \( 1 + (-3 - 1.73i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.21 + 5.57i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-13.2 + 7.65i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-5.19 - 3i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 0.179iT - 73T^{2} \) |
| 79 | \( 1 + 6.21T + 79T^{2} \) |
| 83 | \( 1 + 1.23iT - 83T^{2} \) |
| 89 | \( 1 + (-8.98 + 5.18i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-16.3 - 9.46i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.862855434013022120625225647391, −8.663525184163299304167684238451, −7.67448151438853712235337410263, −6.60313330871626442116331890494, −6.27761429089652237044269608842, −5.11717955950380528047791772809, −3.87309584636142758465484626388, −3.37352754450002739137880632506, −2.22822112545568715150453948901, −0.40256962627669249103364398219,
1.89458322764184369146032785689, 3.18571803851456051404614758317, 3.95743118527469890293904314145, 5.13471612980753938887817141625, 5.90625832877612545404172265642, 6.61372174974082089637654912488, 7.45113345723985402985174388358, 8.589636926326621299382690570501, 9.221934306642340389734858121693, 9.871114613896143631153486691994