Properties

Label 2-116032-1.1-c1-0-19
Degree $2$
Conductor $116032$
Sign $-1$
Analytic cond. $926.520$
Root an. cond. $30.4387$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 3·9-s − 5·11-s − 13-s − 6·17-s − 4·19-s − 4·25-s − 5·31-s + 37-s − 2·41-s − 2·43-s + 3·45-s + 2·47-s − 9·53-s + 5·55-s + 3·59-s + 6·61-s + 65-s − 5·67-s + 71-s − 10·73-s + 4·79-s + 9·81-s + 14·83-s + 6·85-s − 15·89-s + 4·95-s + ⋯
L(s)  = 1  − 0.447·5-s − 9-s − 1.50·11-s − 0.277·13-s − 1.45·17-s − 0.917·19-s − 4/5·25-s − 0.898·31-s + 0.164·37-s − 0.312·41-s − 0.304·43-s + 0.447·45-s + 0.291·47-s − 1.23·53-s + 0.674·55-s + 0.390·59-s + 0.768·61-s + 0.124·65-s − 0.610·67-s + 0.118·71-s − 1.17·73-s + 0.450·79-s + 81-s + 1.53·83-s + 0.650·85-s − 1.58·89-s + 0.410·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116032\)    =    \(2^{6} \cdot 7^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(926.520\)
Root analytic conductor: \(30.4387\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 116032,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
37 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 5 T + p T^{2} \) 1.31.f
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 + 9 T + p T^{2} \) 1.97.j
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.85200327208217, −13.24633694233743, −12.92072543127137, −12.51691226328146, −11.79579834266415, −11.26920960910099, −11.13104495004938, −10.39410285430924, −10.16293688713570, −9.288788776649815, −8.882437220572282, −8.413130347371378, −7.895195576154795, −7.553646286226994, −6.836712253458074, −6.333380251552055, −5.719601678192633, −5.270666497660024, −4.648565128731928, −4.199871144391558, −3.426473646346900, −2.889893853030241, −2.220847868391351, −1.898675389038013, −0.4818783795034909, 0, 0.4818783795034909, 1.898675389038013, 2.220847868391351, 2.889893853030241, 3.426473646346900, 4.199871144391558, 4.648565128731928, 5.270666497660024, 5.719601678192633, 6.333380251552055, 6.836712253458074, 7.553646286226994, 7.895195576154795, 8.413130347371378, 8.882437220572282, 9.288788776649815, 10.16293688713570, 10.39410285430924, 11.13104495004938, 11.26920960910099, 11.79579834266415, 12.51691226328146, 12.92072543127137, 13.24633694233743, 13.85200327208217

Graph of the $Z$-function along the critical line