L(s) = 1 | − 12i·5-s − 32·7-s + 8i·11-s + 20i·13-s + 98·17-s + 88i·19-s − 32·23-s − 19·25-s + 172i·29-s − 256·31-s + 384i·35-s + 92i·37-s + 102·41-s − 296i·43-s + 320·47-s + ⋯ |
L(s) = 1 | − 1.07i·5-s − 1.72·7-s + 0.219i·11-s + 0.426i·13-s + 1.39·17-s + 1.06i·19-s − 0.290·23-s − 0.151·25-s + 1.10i·29-s − 1.48·31-s + 1.85i·35-s + 0.408i·37-s + 0.388·41-s − 1.04i·43-s + 0.993·47-s + ⋯ |
Λ(s)=(=(1152s/2ΓC(s)L(s)(0.707+0.707i)Λ(4−s)
Λ(s)=(=(1152s/2ΓC(s+3/2)L(s)(0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
1152
= 27⋅32
|
Sign: |
0.707+0.707i
|
Analytic conductor: |
67.9702 |
Root analytic conductor: |
8.24440 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1152(577,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1152, ( :3/2), 0.707+0.707i)
|
Particular Values
L(2) |
≈ |
1.352819252 |
L(21) |
≈ |
1.352819252 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+12iT−125T2 |
| 7 | 1+32T+343T2 |
| 11 | 1−8iT−1.33e3T2 |
| 13 | 1−20iT−2.19e3T2 |
| 17 | 1−98T+4.91e3T2 |
| 19 | 1−88iT−6.85e3T2 |
| 23 | 1+32T+1.21e4T2 |
| 29 | 1−172iT−2.43e4T2 |
| 31 | 1+256T+2.97e4T2 |
| 37 | 1−92iT−5.06e4T2 |
| 41 | 1−102T+6.89e4T2 |
| 43 | 1+296iT−7.95e4T2 |
| 47 | 1−320T+1.03e5T2 |
| 53 | 1+76iT−1.48e5T2 |
| 59 | 1+408iT−2.05e5T2 |
| 61 | 1+636iT−2.26e5T2 |
| 67 | 1+552iT−3.00e5T2 |
| 71 | 1−416T+3.57e5T2 |
| 73 | 1+138T+3.89e5T2 |
| 79 | 1+64T+4.93e5T2 |
| 83 | 1−392iT−5.71e5T2 |
| 89 | 1+582T+7.04e5T2 |
| 97 | 1−238T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.392656189466090410047124048107, −8.674862319785661612836621078538, −7.66418723613323904447223764772, −6.79746673901580801844728352654, −5.85967078359538650728688935205, −5.17957456048342191021504473275, −3.88892057072972161905692027248, −3.25915613963670719844321856028, −1.74096922812398386298285286014, −0.52020198516688606631277704698,
0.67341887266093627643859601061, 2.59077756564567735159746202525, 3.15367373787743586084644408835, 4.00312819470748420122643950859, 5.60699025300210885792316331158, 6.15714614460348207807664741314, 7.07104639519245952422796475666, 7.58914452445000718275572054090, 8.890809329735441799240492357002, 9.666664658809018361517647869113