L(s) = 1 | + 12i·5-s − 32·7-s − 8i·11-s − 20i·13-s + 98·17-s − 88i·19-s − 32·23-s − 19·25-s − 172i·29-s − 256·31-s − 384i·35-s − 92i·37-s + 102·41-s + 296i·43-s + 320·47-s + ⋯ |
L(s) = 1 | + 1.07i·5-s − 1.72·7-s − 0.219i·11-s − 0.426i·13-s + 1.39·17-s − 1.06i·19-s − 0.290·23-s − 0.151·25-s − 1.10i·29-s − 1.48·31-s − 1.85i·35-s − 0.408i·37-s + 0.388·41-s + 1.04i·43-s + 0.993·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.352819252\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.352819252\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 - 12iT - 125T^{2} \) |
| 7 | \( 1 + 32T + 343T^{2} \) |
| 11 | \( 1 + 8iT - 1.33e3T^{2} \) |
| 13 | \( 1 + 20iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 98T + 4.91e3T^{2} \) |
| 19 | \( 1 + 88iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 32T + 1.21e4T^{2} \) |
| 29 | \( 1 + 172iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 256T + 2.97e4T^{2} \) |
| 37 | \( 1 + 92iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 102T + 6.89e4T^{2} \) |
| 43 | \( 1 - 296iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 320T + 1.03e5T^{2} \) |
| 53 | \( 1 - 76iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 408iT - 2.05e5T^{2} \) |
| 61 | \( 1 - 636iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 552iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 416T + 3.57e5T^{2} \) |
| 73 | \( 1 + 138T + 3.89e5T^{2} \) |
| 79 | \( 1 + 64T + 4.93e5T^{2} \) |
| 83 | \( 1 + 392iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 582T + 7.04e5T^{2} \) |
| 97 | \( 1 - 238T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.666664658809018361517647869113, −8.890809329735441799240492357002, −7.58914452445000718275572054090, −7.07104639519245952422796475666, −6.15714614460348207807664741314, −5.60699025300210885792316331158, −4.00312819470748420122643950859, −3.15367373787743586084644408835, −2.59077756564567735159746202525, −0.67341887266093627643859601061,
0.52020198516688606631277704698, 1.74096922812398386298285286014, 3.25915613963670719844321856028, 3.88892057072972161905692027248, 5.17957456048342191021504473275, 5.85967078359538650728688935205, 6.79746673901580801844728352654, 7.66418723613323904447223764772, 8.674862319785661612836621078538, 9.392656189466090410047124048107