Properties

Label 2-11466-1.1-c1-0-47
Degree $2$
Conductor $11466$
Sign $-1$
Analytic cond. $91.5564$
Root an. cond. $9.56851$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s + 8-s − 2·10-s − 3·11-s + 13-s + 16-s + 5·17-s − 19-s − 2·20-s − 3·22-s − 25-s + 26-s + 29-s − 4·31-s + 32-s + 5·34-s − 2·37-s − 38-s − 2·40-s + 10·41-s − 10·43-s − 3·44-s − 47-s − 50-s + 52-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.353·8-s − 0.632·10-s − 0.904·11-s + 0.277·13-s + 1/4·16-s + 1.21·17-s − 0.229·19-s − 0.447·20-s − 0.639·22-s − 1/5·25-s + 0.196·26-s + 0.185·29-s − 0.718·31-s + 0.176·32-s + 0.857·34-s − 0.328·37-s − 0.162·38-s − 0.316·40-s + 1.56·41-s − 1.52·43-s − 0.452·44-s − 0.145·47-s − 0.141·50-s + 0.138·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11466\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(91.5564\)
Root analytic conductor: \(9.56851\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 11466,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 + 12 T + p T^{2} \) 1.73.m
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.37460335252981, −16.14727171830748, −15.57441257956135, −14.96410189432702, −14.55229875165439, −13.89899045090730, −13.19862845351861, −12.79161248846554, −12.13154367076409, −11.67981207977643, −11.07605802130154, −10.46415985877291, −9.925754411152571, −9.079021714004809, −8.154778008098907, −7.903774395090671, −7.217945416733368, −6.551503135310189, −5.608617415956514, −5.299862856236496, −4.365939641538751, −3.772092755089723, −3.141276628565804, −2.343864637495128, −1.242729501895119, 0, 1.242729501895119, 2.343864637495128, 3.141276628565804, 3.772092755089723, 4.365939641538751, 5.299862856236496, 5.608617415956514, 6.551503135310189, 7.217945416733368, 7.903774395090671, 8.154778008098907, 9.079021714004809, 9.925754411152571, 10.46415985877291, 11.07605802130154, 11.67981207977643, 12.13154367076409, 12.79161248846554, 13.19862845351861, 13.89899045090730, 14.55229875165439, 14.96410189432702, 15.57441257956135, 16.14727171830748, 16.37460335252981

Graph of the $Z$-function along the critical line