Properties

Label 2-112632-1.1-c1-0-7
Degree $2$
Conductor $112632$
Sign $1$
Analytic cond. $899.371$
Root an. cond. $29.9895$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s − 4·11-s + 13-s + 7·17-s − 23-s − 5·25-s − 27-s + 6·29-s − 31-s + 4·33-s + 7·37-s − 39-s + 5·41-s − 11·43-s + 10·47-s − 7·49-s − 7·51-s + 11·59-s − 61-s − 13·67-s + 69-s + 8·71-s + 6·73-s + 5·75-s − 14·79-s + 81-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s − 1.20·11-s + 0.277·13-s + 1.69·17-s − 0.208·23-s − 25-s − 0.192·27-s + 1.11·29-s − 0.179·31-s + 0.696·33-s + 1.15·37-s − 0.160·39-s + 0.780·41-s − 1.67·43-s + 1.45·47-s − 49-s − 0.980·51-s + 1.43·59-s − 0.128·61-s − 1.58·67-s + 0.120·69-s + 0.949·71-s + 0.702·73-s + 0.577·75-s − 1.57·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112632 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112632 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112632\)    =    \(2^{3} \cdot 3 \cdot 13 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(899.371\)
Root analytic conductor: \(29.9895\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 112632,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.758210277\)
\(L(\frac12)\) \(\approx\) \(1.758210277\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 - T \)
19 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 11 T + p T^{2} \) 1.59.al
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.59201313061185, −13.01888652629211, −12.74731426465228, −12.03705957608973, −11.80211801316430, −11.24698842834675, −10.61245937987104, −10.23514091590367, −9.883422298478806, −9.371169688975739, −8.585698385553872, −8.040247722685104, −7.711555813615004, −7.271690195817756, −6.407145116472636, −6.104448594689916, −5.361181952394867, −5.243056845964529, −4.438896581794829, −3.864514765460534, −3.192768475165077, −2.645621214348878, −1.903627474496162, −1.105489764441038, −0.4761766377570125, 0.4761766377570125, 1.105489764441038, 1.903627474496162, 2.645621214348878, 3.192768475165077, 3.864514765460534, 4.438896581794829, 5.243056845964529, 5.361181952394867, 6.104448594689916, 6.407145116472636, 7.271690195817756, 7.711555813615004, 8.040247722685104, 8.585698385553872, 9.371169688975739, 9.883422298478806, 10.23514091590367, 10.61245937987104, 11.24698842834675, 11.80211801316430, 12.03705957608973, 12.74731426465228, 13.01888652629211, 13.59201313061185

Graph of the $Z$-function along the critical line