| L(s)  = 1 | + (1.96 − 1.96i)3-s     + (0.254 − 2.22i)5-s     + (−1.87 − 1.87i)7-s     − 4.74i·9-s         + (−4.88 + 4.88i)13-s     + (−3.87 − 4.87i)15-s         − 2.41i·19-s     − 7.36·21-s     + (6.74 − 6.74i)23-s     + (−4.87 − 1.12i)25-s     + (−3.42 − 3.42i)27-s                 + (−4.63 + 3.68i)35-s         + 19.2i·39-s             + (−10.5 − 1.20i)45-s         + 7i·49-s    + ⋯ | 
| L(s)  = 1 | + (1.13 − 1.13i)3-s     + (0.113 − 0.993i)5-s     + (−0.707 − 0.707i)7-s     − 1.58i·9-s         + (−1.35 + 1.35i)13-s     + (−0.999 − 1.25i)15-s         − 0.552i·19-s     − 1.60·21-s     + (1.40 − 1.40i)23-s     + (−0.974 − 0.225i)25-s     + (−0.659 − 0.659i)27-s                 + (−0.782 + 0.622i)35-s         + 3.07i·39-s             + (−1.57 − 0.179i)45-s         + i·49-s    + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.904 + 0.425i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.904 + 0.425i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(1.866245961\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(1.866245961\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 2 | \( 1 \) | 
|  | 5 | \( 1 + (-0.254 + 2.22i)T \) | 
|  | 7 | \( 1 + (1.87 + 1.87i)T \) | 
| good | 3 | \( 1 + (-1.96 + 1.96i)T - 3iT^{2} \) | 
|  | 11 | \( 1 - 11T^{2} \) | 
|  | 13 | \( 1 + (4.88 - 4.88i)T - 13iT^{2} \) | 
|  | 17 | \( 1 - 17iT^{2} \) | 
|  | 19 | \( 1 + 2.41iT - 19T^{2} \) | 
|  | 23 | \( 1 + (-6.74 + 6.74i)T - 23iT^{2} \) | 
|  | 29 | \( 1 + 29T^{2} \) | 
|  | 31 | \( 1 - 31T^{2} \) | 
|  | 37 | \( 1 - 37iT^{2} \) | 
|  | 41 | \( 1 - 41T^{2} \) | 
|  | 43 | \( 1 + 43iT^{2} \) | 
|  | 47 | \( 1 - 47iT^{2} \) | 
|  | 53 | \( 1 + 53iT^{2} \) | 
|  | 59 | \( 1 + 10.4iT - 59T^{2} \) | 
|  | 61 | \( 1 - 6.47T + 61T^{2} \) | 
|  | 67 | \( 1 - 67iT^{2} \) | 
|  | 71 | \( 1 - 15.2T + 71T^{2} \) | 
|  | 73 | \( 1 + 73iT^{2} \) | 
|  | 79 | \( 1 + 8.25iT - 79T^{2} \) | 
|  | 83 | \( 1 + (12.2 - 12.2i)T - 83iT^{2} \) | 
|  | 89 | \( 1 + 89T^{2} \) | 
|  | 97 | \( 1 - 97iT^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−9.274661241747621544947809741975, −8.706525653978998145264451821281, −7.82607386141163618640588624766, −6.94127369455650325828688386147, −6.62935354344275076644179636116, −5.01306648387652536023299991255, −4.15559894726787507964281741132, −2.87636288762870517391529274895, −1.96734492080600686819250883195, −0.68279097708874942884705672610, 
2.41458152777243426972978050309, 3.04581784440595423325050525473, 3.65599229508767578457780372132, 5.03231879601749117464921558050, 5.77523916079108207849619256728, 7.07470428673175184516418723889, 7.77800974073797881833693891943, 8.724022066294817996449206203844, 9.601051815325812007330223117806, 9.932845137888075074756215341474
