Properties

Label 2-1120-1.1-c3-0-25
Degree $2$
Conductor $1120$
Sign $1$
Analytic cond. $66.0821$
Root an. cond. $8.12909$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10.3·3-s + 5·5-s − 7·7-s + 79.3·9-s + 41.8·11-s + 86.0·13-s − 51.5·15-s + 123.·17-s − 30.8·19-s + 72.1·21-s + 172.·23-s + 25·25-s − 539.·27-s − 73.6·29-s + 167.·31-s − 431.·33-s − 35·35-s − 5.02·37-s − 887.·39-s − 152.·41-s + 431.·43-s + 396.·45-s + 180.·47-s + 49·49-s − 1.26e3·51-s + 205.·53-s + 209.·55-s + ⋯
L(s)  = 1  − 1.98·3-s + 0.447·5-s − 0.377·7-s + 2.93·9-s + 1.14·11-s + 1.83·13-s − 0.887·15-s + 1.75·17-s − 0.372·19-s + 0.750·21-s + 1.56·23-s + 0.200·25-s − 3.84·27-s − 0.471·29-s + 0.972·31-s − 2.27·33-s − 0.169·35-s − 0.0223·37-s − 3.64·39-s − 0.580·41-s + 1.53·43-s + 1.31·45-s + 0.559·47-s + 0.142·49-s − 3.48·51-s + 0.531·53-s + 0.513·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1120\)    =    \(2^{5} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(66.0821\)
Root analytic conductor: \(8.12909\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1120,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.631458432\)
\(L(\frac12)\) \(\approx\) \(1.631458432\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 5T \)
7 \( 1 + 7T \)
good3 \( 1 + 10.3T + 27T^{2} \)
11 \( 1 - 41.8T + 1.33e3T^{2} \)
13 \( 1 - 86.0T + 2.19e3T^{2} \)
17 \( 1 - 123.T + 4.91e3T^{2} \)
19 \( 1 + 30.8T + 6.85e3T^{2} \)
23 \( 1 - 172.T + 1.21e4T^{2} \)
29 \( 1 + 73.6T + 2.43e4T^{2} \)
31 \( 1 - 167.T + 2.97e4T^{2} \)
37 \( 1 + 5.02T + 5.06e4T^{2} \)
41 \( 1 + 152.T + 6.89e4T^{2} \)
43 \( 1 - 431.T + 7.95e4T^{2} \)
47 \( 1 - 180.T + 1.03e5T^{2} \)
53 \( 1 - 205.T + 1.48e5T^{2} \)
59 \( 1 + 91.2T + 2.05e5T^{2} \)
61 \( 1 + 531.T + 2.26e5T^{2} \)
67 \( 1 - 291.T + 3.00e5T^{2} \)
71 \( 1 + 575.T + 3.57e5T^{2} \)
73 \( 1 + 91.0T + 3.89e5T^{2} \)
79 \( 1 - 113.T + 4.93e5T^{2} \)
83 \( 1 + 1.09e3T + 5.71e5T^{2} \)
89 \( 1 - 1.03e3T + 7.04e5T^{2} \)
97 \( 1 - 869.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.670462613506752668365888442372, −8.852594641578005196791326563081, −7.44701172871599235664616026310, −6.59690274469675564818368551071, −6.03289474575284030990056936712, −5.49500287449259547433309073146, −4.38002070410846075988037959288, −3.47982545416781974361446423376, −1.33657733298652250746620443017, −0.905081591657202615581037220077, 0.905081591657202615581037220077, 1.33657733298652250746620443017, 3.47982545416781974361446423376, 4.38002070410846075988037959288, 5.49500287449259547433309073146, 6.03289474575284030990056936712, 6.59690274469675564818368551071, 7.44701172871599235664616026310, 8.852594641578005196791326563081, 9.670462613506752668365888442372

Graph of the $Z$-function along the critical line