Properties

Label 1120.4.a.q
Level $1120$
Weight $4$
Character orbit 1120.a
Self dual yes
Analytic conductor $66.082$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1120,4,Mod(1,1120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1120.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1120, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1120 = 2^{5} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1120.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-11,0,25] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.0821392064\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 89x^{3} + 129x^{2} + 900x - 180 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 2) q^{3} + 5 q^{5} - 7 q^{7} + (\beta_{3} + 3 \beta_1 + 13) q^{9} + (\beta_{2} + \beta_1 + 2) q^{11} + (\beta_{4} + \beta_{3} + 3 \beta_1 + 18) q^{13} + ( - 5 \beta_1 - 10) q^{15} + (2 \beta_{3} + \beta_1 + 32) q^{17}+ \cdots + (12 \beta_{4} + 35 \beta_{3} + \cdots + 50) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 11 q^{3} + 25 q^{5} - 35 q^{7} + 68 q^{9} + 9 q^{11} + 91 q^{13} - 55 q^{15} + 161 q^{17} - 84 q^{19} + 77 q^{21} + 60 q^{23} + 125 q^{25} - 413 q^{27} + 217 q^{29} + 22 q^{31} - 249 q^{33} - 175 q^{35}+ \cdots + 402 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 89x^{3} + 129x^{2} + 900x - 180 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + \nu^{2} - 66\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + \nu - 36 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} - 85\nu^{2} + 60\nu + 612 ) / 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - \beta _1 + 36 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{3} + 3\beta_{2} + 67\beta _1 - 36 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 6\beta_{4} + 85\beta_{3} - 145\beta _1 + 2448 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
8.31105
4.38145
0.195272
−2.77910
−9.10867
0 −10.3110 0 5.00000 0 −7.00000 0 79.3177 0
1.2 0 −6.38145 0 5.00000 0 −7.00000 0 13.7229 0
1.3 0 −2.19527 0 5.00000 0 −7.00000 0 −22.1808 0
1.4 0 0.779096 0 5.00000 0 −7.00000 0 −26.3930 0
1.5 0 7.10867 0 5.00000 0 −7.00000 0 23.5332 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1120.4.a.q 5
4.b odd 2 1 1120.4.a.t yes 5
8.b even 2 1 2240.4.a.cp 5
8.d odd 2 1 2240.4.a.cm 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1120.4.a.q 5 1.a even 1 1 trivial
1120.4.a.t yes 5 4.b odd 2 1
2240.4.a.cm 5 8.d odd 2 1
2240.4.a.cp 5 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1120))\):

\( T_{3}^{5} + 11T_{3}^{4} - 41T_{3}^{3} - 559T_{3}^{2} - 572T_{3} + 800 \) Copy content Toggle raw display
\( T_{11}^{5} - 9T_{11}^{4} - 4417T_{11}^{3} + 24829T_{11}^{2} + 4088916T_{11} + 8379680 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( T^{5} + 11 T^{4} + \cdots + 800 \) Copy content Toggle raw display
$5$ \( (T - 5)^{5} \) Copy content Toggle raw display
$7$ \( (T + 7)^{5} \) Copy content Toggle raw display
$11$ \( T^{5} - 9 T^{4} + \cdots + 8379680 \) Copy content Toggle raw display
$13$ \( T^{5} - 91 T^{4} + \cdots - 180761220 \) Copy content Toggle raw display
$17$ \( T^{5} - 161 T^{4} + \cdots - 181193300 \) Copy content Toggle raw display
$19$ \( T^{5} + 84 T^{4} + \cdots - 128450560 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots - 6025936896 \) Copy content Toggle raw display
$29$ \( T^{5} - 217 T^{4} + \cdots - 207299340 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots - 12695500800 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 2179440000 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots + 2073300000 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots - 69329887232 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots - 5322104866240 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 1226009088000 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots + 188636774400 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots + 2106472952800 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots + 16353263616 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots - 3434615377920 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots + 186391636000 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 2207702242880 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots - 38585932800000 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots - 55089402520608 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots - 615019097092500 \) Copy content Toggle raw display
show more
show less