Properties

Label 2-1120-1.1-c3-0-20
Degree $2$
Conductor $1120$
Sign $1$
Analytic cond. $66.0821$
Root an. cond. $8.12909$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.779·3-s + 5·5-s − 7·7-s − 26.3·9-s + 55.7·11-s − 46.6·13-s + 3.89·15-s − 32.8·17-s − 35.7·19-s − 5.45·21-s + 82.7·23-s + 25·25-s − 41.5·27-s + 195.·29-s − 94.9·31-s + 43.4·33-s − 35·35-s + 400.·37-s − 36.3·39-s − 72.1·41-s + 189.·43-s − 131.·45-s − 466.·47-s + 49·49-s − 25.6·51-s + 575.·53-s + 278.·55-s + ⋯
L(s)  = 1  + 0.149·3-s + 0.447·5-s − 0.377·7-s − 0.977·9-s + 1.52·11-s − 0.995·13-s + 0.0670·15-s − 0.469·17-s − 0.431·19-s − 0.0566·21-s + 0.749·23-s + 0.200·25-s − 0.296·27-s + 1.24·29-s − 0.550·31-s + 0.229·33-s − 0.169·35-s + 1.78·37-s − 0.149·39-s − 0.274·41-s + 0.673·43-s − 0.437·45-s − 1.44·47-s + 0.142·49-s − 0.0703·51-s + 1.49·53-s + 0.683·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1120\)    =    \(2^{5} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(66.0821\)
Root analytic conductor: \(8.12909\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1120,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.094094975\)
\(L(\frac12)\) \(\approx\) \(2.094094975\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 5T \)
7 \( 1 + 7T \)
good3 \( 1 - 0.779T + 27T^{2} \)
11 \( 1 - 55.7T + 1.33e3T^{2} \)
13 \( 1 + 46.6T + 2.19e3T^{2} \)
17 \( 1 + 32.8T + 4.91e3T^{2} \)
19 \( 1 + 35.7T + 6.85e3T^{2} \)
23 \( 1 - 82.7T + 1.21e4T^{2} \)
29 \( 1 - 195.T + 2.43e4T^{2} \)
31 \( 1 + 94.9T + 2.97e4T^{2} \)
37 \( 1 - 400.T + 5.06e4T^{2} \)
41 \( 1 + 72.1T + 6.89e4T^{2} \)
43 \( 1 - 189.T + 7.95e4T^{2} \)
47 \( 1 + 466.T + 1.03e5T^{2} \)
53 \( 1 - 575.T + 1.48e5T^{2} \)
59 \( 1 + 155.T + 2.05e5T^{2} \)
61 \( 1 + 35.1T + 2.26e5T^{2} \)
67 \( 1 - 407.T + 3.00e5T^{2} \)
71 \( 1 + 766.T + 3.57e5T^{2} \)
73 \( 1 - 776.T + 3.89e5T^{2} \)
79 \( 1 - 872.T + 4.93e5T^{2} \)
83 \( 1 - 759.T + 5.71e5T^{2} \)
89 \( 1 - 963.T + 7.04e5T^{2} \)
97 \( 1 + 1.06e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.282212564548140217233484471680, −8.901117667092698325659507233993, −7.85971548878074546440772415192, −6.71947524044346397971370321525, −6.27661225184885056115058222605, −5.18202699942552594435116020741, −4.20181854616023223685932812490, −3.06751444599004621198537617939, −2.16290725137243830139623569556, −0.73912593280595603400899401937, 0.73912593280595603400899401937, 2.16290725137243830139623569556, 3.06751444599004621198537617939, 4.20181854616023223685932812490, 5.18202699942552594435116020741, 6.27661225184885056115058222605, 6.71947524044346397971370321525, 7.85971548878074546440772415192, 8.901117667092698325659507233993, 9.282212564548140217233484471680

Graph of the $Z$-function along the critical line