Properties

Label 2-1120-1.1-c3-0-19
Degree $2$
Conductor $1120$
Sign $1$
Analytic cond. $66.0821$
Root an. cond. $8.12909$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.97·3-s + 5·5-s + 7·7-s + 21.6·9-s + 28.7·11-s + 34.9·13-s − 34.8·15-s − 80.1·17-s + 86.6·19-s − 48.8·21-s + 208.·23-s + 25·25-s + 37.2·27-s − 207.·29-s − 44.6·31-s − 200.·33-s + 35·35-s + 98.0·37-s − 244.·39-s + 153.·41-s − 269.·43-s + 108.·45-s + 176.·47-s + 49·49-s + 559.·51-s − 518.·53-s + 143.·55-s + ⋯
L(s)  = 1  − 1.34·3-s + 0.447·5-s + 0.377·7-s + 0.802·9-s + 0.786·11-s + 0.746·13-s − 0.600·15-s − 1.14·17-s + 1.04·19-s − 0.507·21-s + 1.89·23-s + 0.200·25-s + 0.265·27-s − 1.32·29-s − 0.258·31-s − 1.05·33-s + 0.169·35-s + 0.435·37-s − 1.00·39-s + 0.584·41-s − 0.956·43-s + 0.358·45-s + 0.547·47-s + 0.142·49-s + 1.53·51-s − 1.34·53-s + 0.351·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1120\)    =    \(2^{5} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(66.0821\)
Root analytic conductor: \(8.12909\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1120,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.561693316\)
\(L(\frac12)\) \(\approx\) \(1.561693316\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 5T \)
7 \( 1 - 7T \)
good3 \( 1 + 6.97T + 27T^{2} \)
11 \( 1 - 28.7T + 1.33e3T^{2} \)
13 \( 1 - 34.9T + 2.19e3T^{2} \)
17 \( 1 + 80.1T + 4.91e3T^{2} \)
19 \( 1 - 86.6T + 6.85e3T^{2} \)
23 \( 1 - 208.T + 1.21e4T^{2} \)
29 \( 1 + 207.T + 2.43e4T^{2} \)
31 \( 1 + 44.6T + 2.97e4T^{2} \)
37 \( 1 - 98.0T + 5.06e4T^{2} \)
41 \( 1 - 153.T + 6.89e4T^{2} \)
43 \( 1 + 269.T + 7.95e4T^{2} \)
47 \( 1 - 176.T + 1.03e5T^{2} \)
53 \( 1 + 518.T + 1.48e5T^{2} \)
59 \( 1 + 226.T + 2.05e5T^{2} \)
61 \( 1 + 696.T + 2.26e5T^{2} \)
67 \( 1 + 548.T + 3.00e5T^{2} \)
71 \( 1 - 653.T + 3.57e5T^{2} \)
73 \( 1 - 731.T + 3.89e5T^{2} \)
79 \( 1 + 697.T + 4.93e5T^{2} \)
83 \( 1 - 577.T + 5.71e5T^{2} \)
89 \( 1 - 1.53e3T + 7.04e5T^{2} \)
97 \( 1 - 1.00e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.338074852956621695920623592581, −8.936256872254914607987939173182, −7.58657775339464985052542362648, −6.69911591441218561159661241017, −6.08376302552874378039297408291, −5.23710945209461408666642715358, −4.53101326602752208994818283271, −3.26123447640942991623764409722, −1.68650183081710239312541799792, −0.73759663048544458657972328074, 0.73759663048544458657972328074, 1.68650183081710239312541799792, 3.26123447640942991623764409722, 4.53101326602752208994818283271, 5.23710945209461408666642715358, 6.08376302552874378039297408291, 6.69911591441218561159661241017, 7.58657775339464985052542362648, 8.936256872254914607987939173182, 9.338074852956621695920623592581

Graph of the $Z$-function along the critical line