Properties

Label 1120.4.a.o
Level $1120$
Weight $4$
Character orbit 1120.a
Self dual yes
Analytic conductor $66.082$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1120,4,Mod(1,1120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1120.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1120, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1120 = 2^{5} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1120.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,7,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.0821392064\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.505876.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 12x^{2} + 14x + 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3}\cdot 7 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 2) q^{3} + 5 q^{5} + 7 q^{7} + (\beta_{3} + 2 \beta_{2} + \beta_1 + 12) q^{9} + (\beta_{3} - 2 \beta_{2} - \beta_1 + 23) q^{11} + ( - 3 \beta_{2} - \beta_1 + 28) q^{13} + (5 \beta_{2} + 10) q^{15}+ \cdots + (36 \beta_{3} + 94 \beta_{2} + \cdots + 272) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 7 q^{3} + 20 q^{5} + 28 q^{7} + 47 q^{9} + 91 q^{11} + 113 q^{13} + 35 q^{15} + 3 q^{17} + 112 q^{19} + 49 q^{21} + 168 q^{23} + 100 q^{25} + 133 q^{27} + 31 q^{29} + 126 q^{31} - 33 q^{33} + 140 q^{35}+ \cdots + 1050 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 12x^{2} + 14x + 14 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu^{3} - 12\nu + 6 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{3} - 2\nu^{2} + 8\nu + 9 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -3\nu^{3} + 32\nu - 12 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 2\beta_{3} + 3\beta _1 + 6 ) / 28 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 7\beta_{2} - 2\beta _1 + 87 ) / 14 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{3} + 8\beta _1 - 12 ) / 7 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.89886
−3.39356
−0.660367
2.15507
0 −6.97602 0 5.00000 0 7.00000 0 21.6649 0
1.2 0 −0.0999296 0 5.00000 0 7.00000 0 −26.9900 0
1.3 0 5.13287 0 5.00000 0 7.00000 0 −0.653613 0
1.4 0 8.94308 0 5.00000 0 7.00000 0 52.9787 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1120.4.a.o yes 4
4.b odd 2 1 1120.4.a.g 4
8.b even 2 1 2240.4.a.cb 4
8.d odd 2 1 2240.4.a.cj 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1120.4.a.g 4 4.b odd 2 1
1120.4.a.o yes 4 1.a even 1 1 trivial
2240.4.a.cb 4 8.b even 2 1
2240.4.a.cj 4 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1120))\):

\( T_{3}^{4} - 7T_{3}^{3} - 53T_{3}^{2} + 315T_{3} + 32 \) Copy content Toggle raw display
\( T_{11}^{4} - 91T_{11}^{3} + 1139T_{11}^{2} + 75943T_{11} - 1644992 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 7 T^{3} + \cdots + 32 \) Copy content Toggle raw display
$5$ \( (T - 5)^{4} \) Copy content Toggle raw display
$7$ \( (T - 7)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 91 T^{3} + \cdots - 1644992 \) Copy content Toggle raw display
$13$ \( T^{4} - 113 T^{3} + \cdots + 84758 \) Copy content Toggle raw display
$17$ \( T^{4} - 3 T^{3} + \cdots + 8079142 \) Copy content Toggle raw display
$19$ \( T^{4} - 112 T^{3} + \cdots + 18000640 \) Copy content Toggle raw display
$23$ \( T^{4} - 168 T^{3} + \cdots - 41202432 \) Copy content Toggle raw display
$29$ \( T^{4} - 31 T^{3} + \cdots + 771306026 \) Copy content Toggle raw display
$31$ \( T^{4} - 126 T^{3} + \cdots + 35668480 \) Copy content Toggle raw display
$37$ \( T^{4} - 186 T^{3} + \cdots - 463914688 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 4221999952 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 7128762624 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 1402565544 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 8009245696 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 20185128448 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 90789279760 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 67111161856 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 43953565696 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 209205759472 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 87644292464 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 216452263936 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 437635896496 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 336791185558 \) Copy content Toggle raw display
show more
show less