L(s) = 1 | + 3-s + 4-s − 7-s + 9-s + 12-s − 13-s + 16-s − 21-s + 25-s + 27-s − 28-s − 31-s + 36-s − 37-s − 39-s − 43-s + 48-s − 52-s − 61-s − 63-s + 64-s − 67-s − 73-s + 75-s − 79-s + 81-s − 84-s + ⋯ |
L(s) = 1 | + 3-s + 4-s − 7-s + 9-s + 12-s − 13-s + 16-s − 21-s + 25-s + 27-s − 28-s − 31-s + 36-s − 37-s − 39-s − 43-s + 48-s − 52-s − 61-s − 63-s + 64-s − 67-s − 73-s + 75-s − 79-s + 81-s − 84-s + ⋯ |
Λ(s)=(=(1083s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(1083s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
1083
= 3⋅192
|
Sign: |
1
|
Analytic conductor: |
0.540487 |
Root analytic conductor: |
0.735178 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ1083(362,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 1083, ( :0), 1)
|
Particular Values
L(21) |
≈ |
1.593231853 |
L(21) |
≈ |
1.593231853 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 19 | 1 |
good | 2 | (1−T)(1+T) |
| 5 | (1−T)(1+T) |
| 7 | 1+T+T2 |
| 11 | (1−T)(1+T) |
| 13 | 1+T+T2 |
| 17 | (1−T)(1+T) |
| 23 | (1−T)(1+T) |
| 29 | (1−T)(1+T) |
| 31 | 1+T+T2 |
| 37 | 1+T+T2 |
| 41 | (1−T)(1+T) |
| 43 | 1+T+T2 |
| 47 | (1−T)(1+T) |
| 53 | (1−T)(1+T) |
| 59 | (1−T)(1+T) |
| 61 | 1+T+T2 |
| 67 | 1+T+T2 |
| 71 | (1−T)(1+T) |
| 73 | 1+T+T2 |
| 79 | 1+T+T2 |
| 83 | (1−T)(1+T) |
| 89 | (1−T)(1+T) |
| 97 | (1−T)2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.06290955317929830767358687855, −9.288797674257555469372289811718, −8.452967929121358153835405476936, −7.35157812485478151889927165723, −7.02532427698434232535483449218, −6.05528727277577329109096119249, −4.80679393526692214256010234380, −3.45799166917935983993729646004, −2.86640946537598527360617691881, −1.79957236321509578091517513370,
1.79957236321509578091517513370, 2.86640946537598527360617691881, 3.45799166917935983993729646004, 4.80679393526692214256010234380, 6.05528727277577329109096119249, 7.02532427698434232535483449218, 7.35157812485478151889927165723, 8.452967929121358153835405476936, 9.288797674257555469372289811718, 10.06290955317929830767358687855