Basic invariants
Dimension: | $2$ |
Group: | $S_3$ |
Conductor: | \(1083\)\(\medspace = 3 \cdot 19^{2} \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 3.1.1083.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $S_3$ |
Parity: | odd |
Determinant: | 1.3.2t1.a.a |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.1.1083.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{3} - x^{2} - 6x - 12 \) . |
The roots of $f$ are computed in $\Q_{ 97 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 8 + 81\cdot 97 + 33\cdot 97^{2} + 85\cdot 97^{3} + 76\cdot 97^{4} +O(97^{5})\) |
$r_{ 2 }$ | $=$ | \( 9 + 89\cdot 97 + 3\cdot 97^{2} + 86\cdot 97^{3} + 77\cdot 97^{4} +O(97^{5})\) |
$r_{ 3 }$ | $=$ | \( 81 + 23\cdot 97 + 59\cdot 97^{2} + 22\cdot 97^{3} + 39\cdot 97^{4} +O(97^{5})\) |
Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ | Character value |
$1$ | $1$ | $()$ | $2$ |
$3$ | $2$ | $(1,2)$ | $0$ |
$2$ | $3$ | $(1,2,3)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.