L(s) = 1 | + 2·2-s + 3-s + 2·4-s − 3·5-s + 2·6-s − 5·7-s + 9-s − 6·10-s + 11-s + 2·12-s − 2·13-s − 10·14-s − 3·15-s − 4·16-s − 17-s + 2·18-s − 6·20-s − 5·21-s + 2·22-s − 4·23-s + 4·25-s − 4·26-s + 27-s − 10·28-s + 2·29-s − 6·30-s + 6·31-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 0.577·3-s + 4-s − 1.34·5-s + 0.816·6-s − 1.88·7-s + 1/3·9-s − 1.89·10-s + 0.301·11-s + 0.577·12-s − 0.554·13-s − 2.67·14-s − 0.774·15-s − 16-s − 0.242·17-s + 0.471·18-s − 1.34·20-s − 1.09·21-s + 0.426·22-s − 0.834·23-s + 4/5·25-s − 0.784·26-s + 0.192·27-s − 1.88·28-s + 0.371·29-s − 1.09·30-s + 1.07·31-s + ⋯ |
Λ(s)=(=(1083s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1083s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 19 | 1 |
good | 2 | 1−pT+pT2 |
| 5 | 1+3T+pT2 |
| 7 | 1+5T+pT2 |
| 11 | 1−T+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1+T+pT2 |
| 23 | 1+4T+pT2 |
| 29 | 1−2T+pT2 |
| 31 | 1−6T+pT2 |
| 37 | 1+pT2 |
| 41 | 1+pT2 |
| 43 | 1+T+pT2 |
| 47 | 1+9T+pT2 |
| 53 | 1+10T+pT2 |
| 59 | 1−8T+pT2 |
| 61 | 1+T+pT2 |
| 67 | 1+8T+pT2 |
| 71 | 1−12T+pT2 |
| 73 | 1+11T+pT2 |
| 79 | 1+16T+pT2 |
| 83 | 1−12T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1−10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.503827882841026216201178111482, −8.598738845501152801902892747277, −7.58489736631665346168199395971, −6.70211043109012358161209293170, −6.16139530761373947123603078754, −4.78903745519092577014884991606, −3.96503328962323463176155683264, −3.37953587462828366448462440771, −2.64121548040677802901277139388, 0,
2.64121548040677802901277139388, 3.37953587462828366448462440771, 3.96503328962323463176155683264, 4.78903745519092577014884991606, 6.16139530761373947123603078754, 6.70211043109012358161209293170, 7.58489736631665346168199395971, 8.598738845501152801902892747277, 9.503827882841026216201178111482