Properties

Label 2-1083-1.1-c1-0-56
Degree $2$
Conductor $1083$
Sign $-1$
Analytic cond. $8.64779$
Root an. cond. $2.94071$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3-s + 2·4-s − 3·5-s + 2·6-s − 5·7-s + 9-s − 6·10-s + 11-s + 2·12-s − 2·13-s − 10·14-s − 3·15-s − 4·16-s − 17-s + 2·18-s − 6·20-s − 5·21-s + 2·22-s − 4·23-s + 4·25-s − 4·26-s + 27-s − 10·28-s + 2·29-s − 6·30-s + 6·31-s + ⋯
L(s)  = 1  + 1.41·2-s + 0.577·3-s + 4-s − 1.34·5-s + 0.816·6-s − 1.88·7-s + 1/3·9-s − 1.89·10-s + 0.301·11-s + 0.577·12-s − 0.554·13-s − 2.67·14-s − 0.774·15-s − 16-s − 0.242·17-s + 0.471·18-s − 1.34·20-s − 1.09·21-s + 0.426·22-s − 0.834·23-s + 4/5·25-s − 0.784·26-s + 0.192·27-s − 1.88·28-s + 0.371·29-s − 1.09·30-s + 1.07·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1083\)    =    \(3 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(8.64779\)
Root analytic conductor: \(2.94071\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1083,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
19 \( 1 \)
good2 \( 1 - p T + p T^{2} \)
5 \( 1 + 3 T + p T^{2} \)
7 \( 1 + 5 T + p T^{2} \)
11 \( 1 - T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 6 T + p T^{2} \)
37 \( 1 + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + T + p T^{2} \)
47 \( 1 + 9 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 + T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 + 11 T + p T^{2} \)
79 \( 1 + 16 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.503827882841026216201178111482, −8.598738845501152801902892747277, −7.58489736631665346168199395971, −6.70211043109012358161209293170, −6.16139530761373947123603078754, −4.78903745519092577014884991606, −3.96503328962323463176155683264, −3.37953587462828366448462440771, −2.64121548040677802901277139388, 0, 2.64121548040677802901277139388, 3.37953587462828366448462440771, 3.96503328962323463176155683264, 4.78903745519092577014884991606, 6.16139530761373947123603078754, 6.70211043109012358161209293170, 7.58489736631665346168199395971, 8.598738845501152801902892747277, 9.503827882841026216201178111482

Graph of the $Z$-function along the critical line