Properties

Label 2.2.76.1-171.1-j
Base field \(\Q(\sqrt{19}) \)
Weight $[2, 2]$
Level norm $171$
Level $[171, 57, 3w]$
Dimension $1$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{19}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 19\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[171, 57, 3w]$
Dimension: $1$
CM: no
Base change: yes
Newspace dimension: $98$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -3w - 13]$ $\phantom{-}2$
3 $[3, 3, w + 4]$ $\phantom{-}1$
3 $[3, 3, w - 4]$ $\phantom{-}1$
5 $[5, 5, 2w + 9]$ $-3$
5 $[5, 5, -2w + 9]$ $-3$
17 $[17, 17, w + 6]$ $-1$
17 $[17, 17, -w + 6]$ $-1$
19 $[19, 19, w]$ $\phantom{-}1$
31 $[31, 31, 20w + 87]$ $\phantom{-}6$
31 $[31, 31, 7w + 30]$ $\phantom{-}6$
49 $[49, 7, -7]$ $\phantom{-}11$
59 $[59, 59, 6w + 25]$ $\phantom{-}8$
59 $[59, 59, -6w + 25]$ $\phantom{-}8$
61 $[61, 61, -9w - 40]$ $-1$
61 $[61, 61, 9w - 40]$ $-1$
67 $[67, 67, 2w - 3]$ $-8$
67 $[67, 67, -2w - 3]$ $-8$
71 $[71, 71, 3w + 10]$ $\phantom{-}12$
71 $[71, 71, 3w - 10]$ $\phantom{-}12$
73 $[73, 73, 27w + 118]$ $-11$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$3$ $[3, 3, w + 4]$ $-1$
$3$ $[3, 3, w - 4]$ $-1$
$19$ $[19, 19, w]$ $-1$