Properties

Label 2-1050-7.5-c2-0-32
Degree $2$
Conductor $1050$
Sign $0.744 + 0.667i$
Analytic cond. $28.6104$
Root an. cond. $5.34887$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 + 1.22i)2-s + (1.5 − 0.866i)3-s + (−0.999 − 1.73i)4-s + 2.44i·6-s + (3.97 − 5.76i)7-s + 2.82·8-s + (1.5 − 2.59i)9-s + (−1.64 − 2.85i)11-s + (−2.99 − 1.73i)12-s + 7.72i·13-s + (4.24 + 8.94i)14-s + (−2.00 + 3.46i)16-s + (10.9 − 6.30i)17-s + (2.12 + 3.67i)18-s + (1.54 + 0.890i)19-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (0.5 − 0.288i)3-s + (−0.249 − 0.433i)4-s + 0.408i·6-s + (0.567 − 0.823i)7-s + 0.353·8-s + (0.166 − 0.288i)9-s + (−0.149 − 0.259i)11-s + (−0.249 − 0.144i)12-s + 0.594i·13-s + (0.303 + 0.638i)14-s + (−0.125 + 0.216i)16-s + (0.642 − 0.371i)17-s + (0.117 + 0.204i)18-s + (0.0812 + 0.0468i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.744 + 0.667i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.744 + 0.667i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1050\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $0.744 + 0.667i$
Analytic conductor: \(28.6104\)
Root analytic conductor: \(5.34887\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1050} (901, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1050,\ (\ :1),\ 0.744 + 0.667i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.890592045\)
\(L(\frac12)\) \(\approx\) \(1.890592045\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.707 - 1.22i)T \)
3 \( 1 + (-1.5 + 0.866i)T \)
5 \( 1 \)
7 \( 1 + (-3.97 + 5.76i)T \)
good11 \( 1 + (1.64 + 2.85i)T + (-60.5 + 104. i)T^{2} \)
13 \( 1 - 7.72iT - 169T^{2} \)
17 \( 1 + (-10.9 + 6.30i)T + (144.5 - 250. i)T^{2} \)
19 \( 1 + (-1.54 - 0.890i)T + (180.5 + 312. i)T^{2} \)
23 \( 1 + (3.37 - 5.85i)T + (-264.5 - 458. i)T^{2} \)
29 \( 1 - 39.2T + 841T^{2} \)
31 \( 1 + (-9.46 + 5.46i)T + (480.5 - 832. i)T^{2} \)
37 \( 1 + (-17.1 + 29.7i)T + (-684.5 - 1.18e3i)T^{2} \)
41 \( 1 + 18.8iT - 1.68e3T^{2} \)
43 \( 1 + 77.4T + 1.84e3T^{2} \)
47 \( 1 + (11.1 + 6.44i)T + (1.10e3 + 1.91e3i)T^{2} \)
53 \( 1 + (25.8 + 44.7i)T + (-1.40e3 + 2.43e3i)T^{2} \)
59 \( 1 + (-97.7 + 56.4i)T + (1.74e3 - 3.01e3i)T^{2} \)
61 \( 1 + (22.7 + 13.1i)T + (1.86e3 + 3.22e3i)T^{2} \)
67 \( 1 + (9.95 + 17.2i)T + (-2.24e3 + 3.88e3i)T^{2} \)
71 \( 1 - 87.4T + 5.04e3T^{2} \)
73 \( 1 + (52.7 - 30.4i)T + (2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (-17.7 + 30.8i)T + (-3.12e3 - 5.40e3i)T^{2} \)
83 \( 1 - 46.6iT - 6.88e3T^{2} \)
89 \( 1 + (47.4 + 27.4i)T + (3.96e3 + 6.85e3i)T^{2} \)
97 \( 1 + 45.7iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.613025819261217829448568501661, −8.496367106490413998425347235731, −8.047360442265622536108071411703, −7.16626910568423077136604757569, −6.54743025531875093310363982722, −5.34997440685156411958552963894, −4.43198555916513927795365000948, −3.35450334411593404125946415252, −1.87820510234246171295027343217, −0.68878256867370484072676357753, 1.26766573855632844880985546026, 2.47429266993349198028244250264, 3.25061669632166059958090220011, 4.50172159728035875866835255634, 5.28140718062339910884430505776, 6.45725626818982612562855395399, 7.77009115141785928972592927233, 8.285555591175444044857906665062, 8.953188737405175961775274456786, 9.985600655484381232580778980062

Graph of the $Z$-function along the critical line