Properties

Label 1050.3.p.d.901.2
Level $1050$
Weight $3$
Character 1050.901
Analytic conductor $28.610$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,3,Mod(451,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.451"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1050.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,12,-8,0,0,0,0,12,0,-4,-24,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.6104277578\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.151613669376.6
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 12x^{6} + 95x^{4} - 588x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 901.2
Root \(1.85439 + 1.88713i\) of defining polynomial
Character \(\chi\) \(=\) 1050.901
Dual form 1050.3.p.d.451.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 1.22474i) q^{2} +(1.50000 - 0.866025i) q^{3} +(-1.00000 - 1.73205i) q^{4} +2.44949i q^{6} +(3.97571 - 5.76140i) q^{7} +2.82843 q^{8} +(1.50000 - 2.59808i) q^{9} +(-1.64728 - 2.85317i) q^{11} +(-3.00000 - 1.73205i) q^{12} +7.72850i q^{13} +(4.24500 + 8.94315i) q^{14} +(-2.00000 + 3.46410i) q^{16} +(10.9280 - 6.30929i) q^{17} +(2.12132 + 3.67423i) q^{18} +(1.54304 + 0.890872i) q^{19} +(0.974040 - 12.0852i) q^{21} +4.65921 q^{22} +(-3.37819 + 5.85120i) q^{23} +(4.24264 - 2.44949i) q^{24} +(-9.46544 - 5.46488i) q^{26} -5.19615i q^{27} +(-13.9547 - 1.12472i) q^{28} +39.2933 q^{29} +(9.46751 - 5.46607i) q^{31} +(-2.82843 - 4.89898i) q^{32} +(-4.94184 - 2.85317i) q^{33} +17.8454i q^{34} -6.00000 q^{36} +(17.1983 - 29.7883i) q^{37} +(-2.18218 + 1.25988i) q^{38} +(6.69308 + 11.5928i) q^{39} -18.8536i q^{41} +(14.1125 + 9.73845i) q^{42} -77.4197 q^{43} +(-3.29456 + 5.70635i) q^{44} +(-4.77748 - 8.27485i) q^{46} +(-11.1602 - 6.44335i) q^{47} +6.92820i q^{48} +(-17.3875 - 45.8113i) q^{49} +(10.9280 - 18.9279i) q^{51} +(13.3862 - 7.72850i) q^{52} +(-25.8440 - 44.7631i) q^{53} +(6.36396 + 3.67423i) q^{54} +(11.2450 - 16.2957i) q^{56} +3.08607 q^{57} +(-27.7846 + 48.1243i) q^{58} +(97.7973 - 56.4633i) q^{59} +(-22.7184 - 13.1165i) q^{61} +15.4604i q^{62} +(-9.00500 - 18.9713i) q^{63} +8.00000 q^{64} +(6.98882 - 4.03500i) q^{66} +(-9.95656 - 17.2453i) q^{67} +(-21.8560 - 12.6186i) q^{68} +11.7024i q^{69} +87.4319 q^{71} +(4.24264 - 7.34847i) q^{72} +(-52.7540 + 30.4575i) q^{73} +(24.3220 + 42.1270i) q^{74} -3.56349i q^{76} +(-22.9874 - 1.85274i) q^{77} -18.9309 q^{78} +(17.7888 - 30.8112i) q^{79} +(-4.50000 - 7.79423i) q^{81} +(23.0909 + 13.3315i) q^{82} +46.6773i q^{83} +(-21.9062 + 10.3981i) q^{84} +(54.7440 - 94.8194i) q^{86} +(58.9399 - 34.0290i) q^{87} +(-4.65921 - 8.06999i) q^{88} +(-47.4706 - 27.4072i) q^{89} +(44.5270 + 30.7263i) q^{91} +13.5128 q^{92} +(9.46751 - 16.3982i) q^{93} +(15.7829 - 9.11228i) q^{94} +(-8.48528 - 4.89898i) q^{96} -45.7447i q^{97} +(68.4020 + 11.0982i) q^{98} -9.88368 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{3} - 8 q^{4} + 12 q^{9} - 4 q^{11} - 24 q^{12} - 16 q^{14} - 16 q^{16} + 24 q^{17} + 72 q^{19} - 24 q^{22} - 60 q^{23} - 72 q^{26} - 24 q^{29} + 96 q^{31} - 12 q^{33} - 48 q^{36} + 24 q^{37}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 1.22474i −0.353553 + 0.612372i
\(3\) 1.50000 0.866025i 0.500000 0.288675i
\(4\) −1.00000 1.73205i −0.250000 0.433013i
\(5\) 0 0
\(6\) 2.44949i 0.408248i
\(7\) 3.97571 5.76140i 0.567958 0.823057i
\(8\) 2.82843 0.353553
\(9\) 1.50000 2.59808i 0.166667 0.288675i
\(10\) 0 0
\(11\) −1.64728 2.85317i −0.149753 0.259379i 0.781383 0.624051i \(-0.214514\pi\)
−0.931136 + 0.364672i \(0.881181\pi\)
\(12\) −3.00000 1.73205i −0.250000 0.144338i
\(13\) 7.72850i 0.594500i 0.954800 + 0.297250i \(0.0960695\pi\)
−0.954800 + 0.297250i \(0.903931\pi\)
\(14\) 4.24500 + 8.94315i 0.303214 + 0.638797i
\(15\) 0 0
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) 10.9280 6.30929i 0.642824 0.371135i −0.142877 0.989740i \(-0.545635\pi\)
0.785702 + 0.618606i \(0.212302\pi\)
\(18\) 2.12132 + 3.67423i 0.117851 + 0.204124i
\(19\) 1.54304 + 0.890872i 0.0812124 + 0.0468880i 0.540056 0.841629i \(-0.318403\pi\)
−0.458844 + 0.888517i \(0.651736\pi\)
\(20\) 0 0
\(21\) 0.974040 12.0852i 0.0463829 0.575484i
\(22\) 4.65921 0.211782
\(23\) −3.37819 + 5.85120i −0.146878 + 0.254400i −0.930072 0.367377i \(-0.880256\pi\)
0.783194 + 0.621777i \(0.213589\pi\)
\(24\) 4.24264 2.44949i 0.176777 0.102062i
\(25\) 0 0
\(26\) −9.46544 5.46488i −0.364055 0.210188i
\(27\) 5.19615i 0.192450i
\(28\) −13.9547 1.12472i −0.498384 0.0401687i
\(29\) 39.2933 1.35494 0.677471 0.735550i \(-0.263076\pi\)
0.677471 + 0.735550i \(0.263076\pi\)
\(30\) 0 0
\(31\) 9.46751 5.46607i 0.305404 0.176325i −0.339464 0.940619i \(-0.610246\pi\)
0.644868 + 0.764294i \(0.276912\pi\)
\(32\) −2.82843 4.89898i −0.0883883 0.153093i
\(33\) −4.94184 2.85317i −0.149753 0.0864598i
\(34\) 17.8454i 0.524864i
\(35\) 0 0
\(36\) −6.00000 −0.166667
\(37\) 17.1983 29.7883i 0.464818 0.805089i −0.534375 0.845248i \(-0.679453\pi\)
0.999193 + 0.0401585i \(0.0127863\pi\)
\(38\) −2.18218 + 1.25988i −0.0574258 + 0.0331548i
\(39\) 6.69308 + 11.5928i 0.171617 + 0.297250i
\(40\) 0 0
\(41\) 18.8536i 0.459844i −0.973209 0.229922i \(-0.926153\pi\)
0.973209 0.229922i \(-0.0738472\pi\)
\(42\) 14.1125 + 9.73845i 0.336012 + 0.231868i
\(43\) −77.4197 −1.80046 −0.900229 0.435416i \(-0.856601\pi\)
−0.900229 + 0.435416i \(0.856601\pi\)
\(44\) −3.29456 + 5.70635i −0.0748764 + 0.129690i
\(45\) 0 0
\(46\) −4.77748 8.27485i −0.103858 0.179888i
\(47\) −11.1602 6.44335i −0.237451 0.137093i 0.376553 0.926395i \(-0.377109\pi\)
−0.614005 + 0.789302i \(0.710442\pi\)
\(48\) 6.92820i 0.144338i
\(49\) −17.3875 45.8113i −0.354847 0.934924i
\(50\) 0 0
\(51\) 10.9280 18.9279i 0.214275 0.371135i
\(52\) 13.3862 7.72850i 0.257426 0.148625i
\(53\) −25.8440 44.7631i −0.487622 0.844586i 0.512276 0.858821i \(-0.328802\pi\)
−0.999899 + 0.0142341i \(0.995469\pi\)
\(54\) 6.36396 + 3.67423i 0.117851 + 0.0680414i
\(55\) 0 0
\(56\) 11.2450 16.2957i 0.200804 0.290995i
\(57\) 3.08607 0.0541416
\(58\) −27.7846 + 48.1243i −0.479044 + 0.829729i
\(59\) 97.7973 56.4633i 1.65758 0.957005i 0.683754 0.729713i \(-0.260346\pi\)
0.973827 0.227292i \(-0.0729872\pi\)
\(60\) 0 0
\(61\) −22.7184 13.1165i −0.372432 0.215024i 0.302088 0.953280i \(-0.402316\pi\)
−0.674521 + 0.738256i \(0.735650\pi\)
\(62\) 15.4604i 0.249361i
\(63\) −9.00500 18.9713i −0.142937 0.301132i
\(64\) 8.00000 0.125000
\(65\) 0 0
\(66\) 6.98882 4.03500i 0.105891 0.0611363i
\(67\) −9.95656 17.2453i −0.148605 0.257392i 0.782107 0.623144i \(-0.214145\pi\)
−0.930712 + 0.365752i \(0.880812\pi\)
\(68\) −21.8560 12.6186i −0.321412 0.185567i
\(69\) 11.7024i 0.169600i
\(70\) 0 0
\(71\) 87.4319 1.23144 0.615718 0.787967i \(-0.288866\pi\)
0.615718 + 0.787967i \(0.288866\pi\)
\(72\) 4.24264 7.34847i 0.0589256 0.102062i
\(73\) −52.7540 + 30.4575i −0.722657 + 0.417226i −0.815730 0.578433i \(-0.803664\pi\)
0.0930727 + 0.995659i \(0.470331\pi\)
\(74\) 24.3220 + 42.1270i 0.328676 + 0.569284i
\(75\) 0 0
\(76\) 3.56349i 0.0468880i
\(77\) −22.9874 1.85274i −0.298537 0.0240615i
\(78\) −18.9309 −0.242704
\(79\) 17.7888 30.8112i 0.225175 0.390015i −0.731197 0.682167i \(-0.761038\pi\)
0.956372 + 0.292152i \(0.0943712\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) 23.0909 + 13.3315i 0.281596 + 0.162580i
\(83\) 46.6773i 0.562377i 0.959653 + 0.281188i \(0.0907286\pi\)
−0.959653 + 0.281188i \(0.909271\pi\)
\(84\) −21.9062 + 10.3981i −0.260788 + 0.123787i
\(85\) 0 0
\(86\) 54.7440 94.8194i 0.636558 1.10255i
\(87\) 58.9399 34.0290i 0.677471 0.391138i
\(88\) −4.65921 8.06999i −0.0529456 0.0917044i
\(89\) −47.4706 27.4072i −0.533378 0.307946i 0.209013 0.977913i \(-0.432975\pi\)
−0.742391 + 0.669967i \(0.766308\pi\)
\(90\) 0 0
\(91\) 44.5270 + 30.7263i 0.489308 + 0.337651i
\(92\) 13.5128 0.146878
\(93\) 9.46751 16.3982i 0.101801 0.176325i
\(94\) 15.7829 9.11228i 0.167903 0.0969391i
\(95\) 0 0
\(96\) −8.48528 4.89898i −0.0883883 0.0510310i
\(97\) 45.7447i 0.471595i −0.971802 0.235798i \(-0.924230\pi\)
0.971802 0.235798i \(-0.0757703\pi\)
\(98\) 68.4020 + 11.0982i 0.697979 + 0.113247i
\(99\) −9.88368 −0.0998352
\(100\) 0 0
\(101\) 79.2589 45.7601i 0.784741 0.453071i −0.0533667 0.998575i \(-0.516995\pi\)
0.838108 + 0.545504i \(0.183662\pi\)
\(102\) 15.4545 + 26.7681i 0.151515 + 0.262432i
\(103\) 43.7414 + 25.2541i 0.424674 + 0.245186i 0.697075 0.716998i \(-0.254484\pi\)
−0.272401 + 0.962184i \(0.587818\pi\)
\(104\) 21.8595i 0.210188i
\(105\) 0 0
\(106\) 73.0978 0.689602
\(107\) 46.9747 81.3626i 0.439016 0.760398i −0.558598 0.829439i \(-0.688660\pi\)
0.997614 + 0.0690404i \(0.0219938\pi\)
\(108\) −9.00000 + 5.19615i −0.0833333 + 0.0481125i
\(109\) −60.3052 104.452i −0.553258 0.958272i −0.998037 0.0626310i \(-0.980051\pi\)
0.444778 0.895641i \(-0.353282\pi\)
\(110\) 0 0
\(111\) 59.5766i 0.536726i
\(112\) 12.0067 + 25.2951i 0.107202 + 0.225849i
\(113\) 10.7318 0.0949713 0.0474856 0.998872i \(-0.484879\pi\)
0.0474856 + 0.998872i \(0.484879\pi\)
\(114\) −2.18218 + 3.77965i −0.0191419 + 0.0331548i
\(115\) 0 0
\(116\) −39.2933 68.0580i −0.338735 0.586707i
\(117\) 20.0792 + 11.5928i 0.171617 + 0.0990834i
\(118\) 159.702i 1.35341i
\(119\) 7.09622 88.0446i 0.0596321 0.739870i
\(120\) 0 0
\(121\) 55.0729 95.3891i 0.455148 0.788340i
\(122\) 32.1286 18.5495i 0.263349 0.152045i
\(123\) −16.3277 28.2804i −0.132746 0.229922i
\(124\) −18.9350 10.9321i −0.152702 0.0881624i
\(125\) 0 0
\(126\) 29.6025 + 2.38590i 0.234940 + 0.0189357i
\(127\) −117.281 −0.923476 −0.461738 0.887016i \(-0.652774\pi\)
−0.461738 + 0.887016i \(0.652774\pi\)
\(128\) −5.65685 + 9.79796i −0.0441942 + 0.0765466i
\(129\) −116.130 + 67.0475i −0.900229 + 0.519748i
\(130\) 0 0
\(131\) 80.2758 + 46.3473i 0.612792 + 0.353796i 0.774058 0.633115i \(-0.218224\pi\)
−0.161265 + 0.986911i \(0.551557\pi\)
\(132\) 11.4127i 0.0864598i
\(133\) 11.2673 5.34820i 0.0847168 0.0402120i
\(134\) 28.1614 0.210160
\(135\) 0 0
\(136\) 30.9091 17.8454i 0.227273 0.131216i
\(137\) −13.7370 23.7932i −0.100270 0.173673i 0.811526 0.584317i \(-0.198637\pi\)
−0.911796 + 0.410644i \(0.865304\pi\)
\(138\) −14.3325 8.27485i −0.103858 0.0599626i
\(139\) 67.0127i 0.482106i −0.970512 0.241053i \(-0.922507\pi\)
0.970512 0.241053i \(-0.0774928\pi\)
\(140\) 0 0
\(141\) −22.3204 −0.158301
\(142\) −61.8237 + 107.082i −0.435378 + 0.754097i
\(143\) 22.0507 12.7310i 0.154201 0.0890280i
\(144\) 6.00000 + 10.3923i 0.0416667 + 0.0721688i
\(145\) 0 0
\(146\) 86.1469i 0.590047i
\(147\) −65.7550 53.6589i −0.447313 0.365027i
\(148\) −68.7931 −0.464818
\(149\) −25.5567 + 44.2656i −0.171522 + 0.297084i −0.938952 0.344048i \(-0.888202\pi\)
0.767430 + 0.641132i \(0.221535\pi\)
\(150\) 0 0
\(151\) 82.6090 + 143.083i 0.547079 + 0.947569i 0.998473 + 0.0552442i \(0.0175937\pi\)
−0.451394 + 0.892325i \(0.649073\pi\)
\(152\) 4.36436 + 2.51977i 0.0287129 + 0.0165774i
\(153\) 37.8558i 0.247423i
\(154\) 18.5237 26.8436i 0.120284 0.174309i
\(155\) 0 0
\(156\) 13.3862 23.1855i 0.0858087 0.148625i
\(157\) 165.248 95.4059i 1.05253 0.607681i 0.129176 0.991622i \(-0.458767\pi\)
0.923358 + 0.383941i \(0.125433\pi\)
\(158\) 25.1572 + 43.5736i 0.159223 + 0.275782i
\(159\) −77.5319 44.7631i −0.487622 0.281529i
\(160\) 0 0
\(161\) 20.2804 + 42.7258i 0.125965 + 0.265377i
\(162\) 12.7279 0.0785674
\(163\) −124.101 + 214.949i −0.761356 + 1.31871i 0.180796 + 0.983521i \(0.442133\pi\)
−0.942152 + 0.335186i \(0.891201\pi\)
\(164\) −32.6554 + 18.8536i −0.199118 + 0.114961i
\(165\) 0 0
\(166\) −57.1678 33.0058i −0.344384 0.198830i
\(167\) 29.2974i 0.175433i −0.996145 0.0877167i \(-0.972043\pi\)
0.996145 0.0877167i \(-0.0279570\pi\)
\(168\) 2.75500 34.1820i 0.0163988 0.203464i
\(169\) 109.270 0.646570
\(170\) 0 0
\(171\) 4.62911 2.67262i 0.0270708 0.0156293i
\(172\) 77.4197 + 134.095i 0.450115 + 0.779622i
\(173\) −19.9982 11.5460i −0.115597 0.0667397i 0.441087 0.897464i \(-0.354593\pi\)
−0.556683 + 0.830725i \(0.687926\pi\)
\(174\) 96.2485i 0.553152i
\(175\) 0 0
\(176\) 13.1782 0.0748764
\(177\) 97.7973 169.390i 0.552527 0.957005i
\(178\) 67.1336 38.7596i 0.377155 0.217751i
\(179\) 104.717 + 181.376i 0.585014 + 1.01327i 0.994874 + 0.101125i \(0.0322442\pi\)
−0.409860 + 0.912148i \(0.634423\pi\)
\(180\) 0 0
\(181\) 243.667i 1.34622i 0.739540 + 0.673112i \(0.235043\pi\)
−0.739540 + 0.673112i \(0.764957\pi\)
\(182\) −69.1172 + 32.8075i −0.379765 + 0.180261i
\(183\) −45.4367 −0.248288
\(184\) −9.55497 + 16.5497i −0.0519292 + 0.0899440i
\(185\) 0 0
\(186\) 13.3891 + 23.1906i 0.0719843 + 0.124681i
\(187\) −36.0030 20.7863i −0.192529 0.111157i
\(188\) 25.7734i 0.137093i
\(189\) −29.9371 20.6584i −0.158397 0.109304i
\(190\) 0 0
\(191\) 118.423 205.114i 0.620014 1.07390i −0.369468 0.929243i \(-0.620460\pi\)
0.989483 0.144653i \(-0.0462064\pi\)
\(192\) 12.0000 6.92820i 0.0625000 0.0360844i
\(193\) 66.4460 + 115.088i 0.344280 + 0.596310i 0.985223 0.171278i \(-0.0547897\pi\)
−0.640943 + 0.767589i \(0.721456\pi\)
\(194\) 56.0256 + 32.3464i 0.288792 + 0.166734i
\(195\) 0 0
\(196\) −61.9600 + 75.9273i −0.316122 + 0.387384i
\(197\) −105.779 −0.536950 −0.268475 0.963287i \(-0.586520\pi\)
−0.268475 + 0.963287i \(0.586520\pi\)
\(198\) 6.98882 12.1050i 0.0352971 0.0611363i
\(199\) 174.541 100.771i 0.877091 0.506389i 0.00739279 0.999973i \(-0.497647\pi\)
0.869698 + 0.493584i \(0.164313\pi\)
\(200\) 0 0
\(201\) −29.8697 17.2453i −0.148605 0.0857973i
\(202\) 129.429i 0.640739i
\(203\) 156.219 226.384i 0.769550 1.11519i
\(204\) −43.7121 −0.214275
\(205\) 0 0
\(206\) −61.8597 + 35.7147i −0.300290 + 0.173372i
\(207\) 10.1346 + 17.5536i 0.0489593 + 0.0848000i
\(208\) −26.7723 15.4570i −0.128713 0.0743125i
\(209\) 5.87006i 0.0280864i
\(210\) 0 0
\(211\) 29.6045 0.140306 0.0701528 0.997536i \(-0.477651\pi\)
0.0701528 + 0.997536i \(0.477651\pi\)
\(212\) −51.6880 + 89.5262i −0.243811 + 0.422293i
\(213\) 131.148 75.7183i 0.615718 0.355485i
\(214\) 66.4323 + 115.064i 0.310431 + 0.537683i
\(215\) 0 0
\(216\) 14.6969i 0.0680414i
\(217\) 6.14783 76.2777i 0.0283310 0.351510i
\(218\) 170.569 0.782426
\(219\) −52.7540 + 91.3726i −0.240886 + 0.417226i
\(220\) 0 0
\(221\) 48.7614 + 84.4572i 0.220640 + 0.382159i
\(222\) 72.9661 + 42.1270i 0.328676 + 0.189761i
\(223\) 328.532i 1.47324i 0.676307 + 0.736620i \(0.263579\pi\)
−0.676307 + 0.736620i \(0.736421\pi\)
\(224\) −39.4700 3.18120i −0.176205 0.0142018i
\(225\) 0 0
\(226\) −7.58850 + 13.1437i −0.0335774 + 0.0581578i
\(227\) 315.628 182.228i 1.39043 0.802766i 0.397069 0.917789i \(-0.370028\pi\)
0.993363 + 0.115023i \(0.0366942\pi\)
\(228\) −3.08607 5.34523i −0.0135354 0.0234440i
\(229\) −260.716 150.525i −1.13850 0.657313i −0.192441 0.981309i \(-0.561640\pi\)
−0.946059 + 0.323996i \(0.894974\pi\)
\(230\) 0 0
\(231\) −36.0856 + 17.1285i −0.156215 + 0.0741496i
\(232\) 111.138 0.479044
\(233\) 141.013 244.241i 0.605204 1.04824i −0.386815 0.922157i \(-0.626425\pi\)
0.992019 0.126087i \(-0.0402418\pi\)
\(234\) −28.3963 + 16.3946i −0.121352 + 0.0700625i
\(235\) 0 0
\(236\) −195.595 112.927i −0.828790 0.478502i
\(237\) 61.6224i 0.260010i
\(238\) 102.814 + 70.9480i 0.431993 + 0.298101i
\(239\) 83.0347 0.347425 0.173713 0.984796i \(-0.444424\pi\)
0.173713 + 0.984796i \(0.444424\pi\)
\(240\) 0 0
\(241\) −287.369 + 165.912i −1.19240 + 0.688433i −0.958851 0.283911i \(-0.908368\pi\)
−0.233551 + 0.972345i \(0.575035\pi\)
\(242\) 77.8849 + 134.901i 0.321838 + 0.557440i
\(243\) −13.5000 7.79423i −0.0555556 0.0320750i
\(244\) 52.4658i 0.215024i
\(245\) 0 0
\(246\) 46.1817 0.187731
\(247\) −6.88511 + 11.9254i −0.0278749 + 0.0482808i
\(248\) 26.7782 15.4604i 0.107977 0.0623403i
\(249\) 40.4237 + 70.0159i 0.162344 + 0.281188i
\(250\) 0 0
\(251\) 419.075i 1.66962i 0.550537 + 0.834811i \(0.314423\pi\)
−0.550537 + 0.834811i \(0.685577\pi\)
\(252\) −23.8542 + 34.5684i −0.0946597 + 0.137176i
\(253\) 22.2593 0.0879815
\(254\) 82.9305 143.640i 0.326498 0.565511i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −289.215 166.979i −1.12535 0.649722i −0.182590 0.983189i \(-0.558448\pi\)
−0.942762 + 0.333467i \(0.891781\pi\)
\(258\) 189.639i 0.735034i
\(259\) −103.247 217.516i −0.398637 0.839829i
\(260\) 0 0
\(261\) 58.9399 102.087i 0.225824 0.391138i
\(262\) −113.527 + 65.5449i −0.433310 + 0.250171i
\(263\) −102.188 176.995i −0.388549 0.672986i 0.603706 0.797207i \(-0.293690\pi\)
−0.992255 + 0.124221i \(0.960357\pi\)
\(264\) −13.9776 8.06999i −0.0529456 0.0305681i
\(265\) 0 0
\(266\) −1.41702 + 17.5814i −0.00532715 + 0.0660953i
\(267\) −94.9412 −0.355585
\(268\) −19.9131 + 34.4905i −0.0743027 + 0.128696i
\(269\) −120.768 + 69.7257i −0.448953 + 0.259203i −0.707388 0.706825i \(-0.750127\pi\)
0.258435 + 0.966029i \(0.416793\pi\)
\(270\) 0 0
\(271\) −323.213 186.607i −1.19267 0.688586i −0.233756 0.972295i \(-0.575102\pi\)
−0.958910 + 0.283709i \(0.908435\pi\)
\(272\) 50.4743i 0.185567i
\(273\) 93.4002 + 7.52787i 0.342125 + 0.0275746i
\(274\) 38.8542 0.141804
\(275\) 0 0
\(276\) 20.2691 11.7024i 0.0734389 0.0424000i
\(277\) 248.752 + 430.851i 0.898022 + 1.55542i 0.830019 + 0.557735i \(0.188329\pi\)
0.0680029 + 0.997685i \(0.478337\pi\)
\(278\) 82.0735 + 47.3852i 0.295228 + 0.170450i
\(279\) 32.7964i 0.117550i
\(280\) 0 0
\(281\) 292.779 1.04192 0.520959 0.853582i \(-0.325574\pi\)
0.520959 + 0.853582i \(0.325574\pi\)
\(282\) 15.7829 27.3368i 0.0559678 0.0969391i
\(283\) −239.686 + 138.383i −0.846949 + 0.488986i −0.859620 0.510934i \(-0.829300\pi\)
0.0126714 + 0.999920i \(0.495966\pi\)
\(284\) −87.4319 151.437i −0.307859 0.533227i
\(285\) 0 0
\(286\) 36.0087i 0.125905i
\(287\) −108.623 74.9565i −0.378478 0.261172i
\(288\) −16.9706 −0.0589256
\(289\) −64.8857 + 112.385i −0.224518 + 0.388876i
\(290\) 0 0
\(291\) −39.6161 68.6171i −0.136138 0.235798i
\(292\) 105.508 + 60.9150i 0.361329 + 0.208613i
\(293\) 375.299i 1.28088i −0.768006 0.640442i \(-0.778751\pi\)
0.768006 0.640442i \(-0.221249\pi\)
\(294\) 112.214 42.5905i 0.381681 0.144866i
\(295\) 0 0
\(296\) 48.6441 84.2540i 0.164338 0.284642i
\(297\) −14.8255 + 8.55952i −0.0499176 + 0.0288199i
\(298\) −36.1427 62.6009i −0.121284 0.210070i
\(299\) −45.2210 26.1084i −0.151241 0.0873189i
\(300\) 0 0
\(301\) −307.798 + 446.046i −1.02259 + 1.48188i
\(302\) −233.653 −0.773687
\(303\) 79.2589 137.280i 0.261580 0.453071i
\(304\) −6.17214 + 3.56349i −0.0203031 + 0.0117220i
\(305\) 0 0
\(306\) 46.3636 + 26.7681i 0.151515 + 0.0874773i
\(307\) 107.784i 0.351088i 0.984472 + 0.175544i \(0.0561684\pi\)
−0.984472 + 0.175544i \(0.943832\pi\)
\(308\) 19.7783 + 41.6680i 0.0642154 + 0.135286i
\(309\) 87.4828 0.283116
\(310\) 0 0
\(311\) −499.771 + 288.543i −1.60698 + 0.927791i −0.616940 + 0.787010i \(0.711628\pi\)
−0.990041 + 0.140780i \(0.955039\pi\)
\(312\) 18.9309 + 32.7893i 0.0606759 + 0.105094i
\(313\) 344.050 + 198.637i 1.09920 + 0.634624i 0.936011 0.351971i \(-0.114488\pi\)
0.163190 + 0.986595i \(0.447822\pi\)
\(314\) 269.849i 0.859390i
\(315\) 0 0
\(316\) −71.1554 −0.225175
\(317\) −40.1851 + 69.6026i −0.126767 + 0.219566i −0.922422 0.386183i \(-0.873793\pi\)
0.795655 + 0.605749i \(0.207127\pi\)
\(318\) 109.647 63.3046i 0.344801 0.199071i
\(319\) −64.7271 112.111i −0.202906 0.351444i
\(320\) 0 0
\(321\) 162.725i 0.506932i
\(322\) −66.6686 5.37336i −0.207045 0.0166874i
\(323\) 22.4831 0.0696071
\(324\) −9.00000 + 15.5885i −0.0277778 + 0.0481125i
\(325\) 0 0
\(326\) −175.505 303.984i −0.538360 0.932467i
\(327\) −180.915 104.452i −0.553258 0.319424i
\(328\) 53.3261i 0.162580i
\(329\) −81.4925 + 38.6816i −0.247698 + 0.117573i
\(330\) 0 0
\(331\) −246.021 + 426.121i −0.743266 + 1.28737i 0.207734 + 0.978185i \(0.433391\pi\)
−0.951000 + 0.309189i \(0.899942\pi\)
\(332\) 80.8474 46.6773i 0.243516 0.140594i
\(333\) −51.5948 89.3649i −0.154939 0.268363i
\(334\) 35.8818 + 20.7164i 0.107431 + 0.0620251i
\(335\) 0 0
\(336\) 39.9162 + 27.5445i 0.118798 + 0.0819777i
\(337\) −630.123 −1.86980 −0.934901 0.354910i \(-0.884512\pi\)
−0.934901 + 0.354910i \(0.884512\pi\)
\(338\) −77.2657 + 133.828i −0.228597 + 0.395941i
\(339\) 16.0976 9.29397i 0.0474856 0.0274159i
\(340\) 0 0
\(341\) −31.1913 18.0083i −0.0914701 0.0528103i
\(342\) 7.55930i 0.0221032i
\(343\) −333.065 81.9559i −0.971035 0.238938i
\(344\) −218.976 −0.636558
\(345\) 0 0
\(346\) 28.2817 16.3285i 0.0817391 0.0471921i
\(347\) 215.071 + 372.514i 0.619802 + 1.07353i 0.989522 + 0.144385i \(0.0461203\pi\)
−0.369720 + 0.929143i \(0.620546\pi\)
\(348\) −117.880 68.0580i −0.338735 0.195569i
\(349\) 95.1819i 0.272727i 0.990659 + 0.136364i \(0.0435416\pi\)
−0.990659 + 0.136364i \(0.956458\pi\)
\(350\) 0 0
\(351\) 40.1585 0.114412
\(352\) −9.31842 + 16.1400i −0.0264728 + 0.0458522i
\(353\) 227.710 131.469i 0.645071 0.372432i −0.141494 0.989939i \(-0.545191\pi\)
0.786565 + 0.617507i \(0.211857\pi\)
\(354\) 138.306 + 239.553i 0.390696 + 0.676704i
\(355\) 0 0
\(356\) 109.629i 0.307946i
\(357\) −65.6045 138.212i −0.183766 0.387150i
\(358\) −296.186 −0.827334
\(359\) −149.386 + 258.743i −0.416116 + 0.720734i −0.995545 0.0942890i \(-0.969942\pi\)
0.579429 + 0.815023i \(0.303276\pi\)
\(360\) 0 0
\(361\) −178.913 309.886i −0.495603 0.858410i
\(362\) −298.429 172.298i −0.824391 0.475962i
\(363\) 190.778i 0.525560i
\(364\) 8.69244 107.849i 0.0238803 0.296289i
\(365\) 0 0
\(366\) 32.1286 55.6484i 0.0877831 0.152045i
\(367\) −114.381 + 66.0380i −0.311665 + 0.179940i −0.647671 0.761920i \(-0.724257\pi\)
0.336006 + 0.941860i \(0.390924\pi\)
\(368\) −13.5128 23.4048i −0.0367195 0.0636000i
\(369\) −48.9831 28.2804i −0.132746 0.0766407i
\(370\) 0 0
\(371\) −360.646 29.0674i −0.972092 0.0783487i
\(372\) −37.8701 −0.101801
\(373\) −5.34394 + 9.25597i −0.0143269 + 0.0248149i −0.873100 0.487541i \(-0.837894\pi\)
0.858773 + 0.512356i \(0.171227\pi\)
\(374\) 50.9159 29.3963i 0.136139 0.0785998i
\(375\) 0 0
\(376\) −31.5659 18.2246i −0.0839517 0.0484696i
\(377\) 303.678i 0.805513i
\(378\) 46.4700 22.0577i 0.122936 0.0583536i
\(379\) 142.918 0.377092 0.188546 0.982064i \(-0.439622\pi\)
0.188546 + 0.982064i \(0.439622\pi\)
\(380\) 0 0
\(381\) −175.922 + 101.569i −0.461738 + 0.266585i
\(382\) 167.475 + 290.075i 0.438416 + 0.759359i
\(383\) −534.349 308.507i −1.39517 0.805500i −0.401286 0.915953i \(-0.631437\pi\)
−0.993881 + 0.110452i \(0.964770\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 0 0
\(386\) −187.938 −0.486885
\(387\) −116.130 + 201.142i −0.300076 + 0.519748i
\(388\) −79.2322 + 45.7447i −0.204207 + 0.117899i
\(389\) 346.969 + 600.968i 0.891951 + 1.54490i 0.837534 + 0.546386i \(0.183997\pi\)
0.0544171 + 0.998518i \(0.482670\pi\)
\(390\) 0 0
\(391\) 85.2560i 0.218046i
\(392\) −49.1793 129.574i −0.125457 0.330546i
\(393\) 160.552 0.408528
\(394\) 74.7972 129.553i 0.189841 0.328814i
\(395\) 0 0
\(396\) 9.88368 + 17.1190i 0.0249588 + 0.0432299i
\(397\) −484.587 279.776i −1.22062 0.704726i −0.255571 0.966790i \(-0.582263\pi\)
−0.965050 + 0.262065i \(0.915597\pi\)
\(398\) 285.024i 0.716142i
\(399\) 12.2693 17.7801i 0.0307502 0.0445616i
\(400\) 0 0
\(401\) 80.6033 139.609i 0.201006 0.348152i −0.747847 0.663871i \(-0.768912\pi\)
0.948853 + 0.315719i \(0.102246\pi\)
\(402\) 42.2421 24.3885i 0.105080 0.0606679i
\(403\) 42.2445 + 73.1697i 0.104825 + 0.181563i
\(404\) −158.518 91.5203i −0.392371 0.226535i
\(405\) 0 0
\(406\) 166.800 + 351.406i 0.410837 + 0.865532i
\(407\) −113.322 −0.278431
\(408\) 30.9091 53.5361i 0.0757576 0.131216i
\(409\) 398.217 229.911i 0.973637 0.562129i 0.0732937 0.997310i \(-0.476649\pi\)
0.900343 + 0.435181i \(0.143316\pi\)
\(410\) 0 0
\(411\) −41.2111 23.7932i −0.100270 0.0578911i
\(412\) 101.016i 0.245186i
\(413\) 63.5056 787.931i 0.153767 1.90782i
\(414\) −28.6649 −0.0692389
\(415\) 0 0
\(416\) 37.8618 21.8595i 0.0910139 0.0525469i
\(417\) −58.0347 100.519i −0.139172 0.241053i
\(418\) 7.18933 + 4.15076i 0.0171994 + 0.00993005i
\(419\) 93.5818i 0.223346i −0.993745 0.111673i \(-0.964379\pi\)
0.993745 0.111673i \(-0.0356208\pi\)
\(420\) 0 0
\(421\) 162.957 0.387072 0.193536 0.981093i \(-0.438004\pi\)
0.193536 + 0.981093i \(0.438004\pi\)
\(422\) −20.9335 + 36.2579i −0.0496055 + 0.0859193i
\(423\) −33.4806 + 19.3301i −0.0791504 + 0.0456975i
\(424\) −73.0978 126.609i −0.172400 0.298606i
\(425\) 0 0
\(426\) 214.164i 0.502731i
\(427\) −165.891 + 78.7425i −0.388503 + 0.184409i
\(428\) −187.899 −0.439016
\(429\) 22.0507 38.1930i 0.0514003 0.0890280i
\(430\) 0 0
\(431\) 165.543 + 286.728i 0.384090 + 0.665263i 0.991642 0.129016i \(-0.0411820\pi\)
−0.607553 + 0.794279i \(0.707849\pi\)
\(432\) 18.0000 + 10.3923i 0.0416667 + 0.0240563i
\(433\) 88.4130i 0.204187i 0.994775 + 0.102094i \(0.0325541\pi\)
−0.994775 + 0.102094i \(0.967446\pi\)
\(434\) 89.0735 + 61.4660i 0.205238 + 0.141627i
\(435\) 0 0
\(436\) −120.610 + 208.903i −0.276629 + 0.479136i
\(437\) −10.4253 + 6.01907i −0.0238566 + 0.0137736i
\(438\) −74.6054 129.220i −0.170332 0.295024i
\(439\) −60.4608 34.9070i −0.137724 0.0795149i 0.429555 0.903041i \(-0.358670\pi\)
−0.567279 + 0.823526i \(0.692004\pi\)
\(440\) 0 0
\(441\) −145.102 23.5429i −0.329031 0.0533852i
\(442\) −137.918 −0.312032
\(443\) −330.217 + 571.953i −0.745411 + 1.29109i 0.204592 + 0.978847i \(0.434413\pi\)
−0.950003 + 0.312242i \(0.898920\pi\)
\(444\) −103.190 + 59.5766i −0.232409 + 0.134182i
\(445\) 0 0
\(446\) −402.368 232.307i −0.902171 0.520869i
\(447\) 88.5311i 0.198056i
\(448\) 31.8057 46.0912i 0.0709948 0.102882i
\(449\) −560.274 −1.24783 −0.623913 0.781493i \(-0.714458\pi\)
−0.623913 + 0.781493i \(0.714458\pi\)
\(450\) 0 0
\(451\) −53.7926 + 31.0572i −0.119274 + 0.0688629i
\(452\) −10.7318 18.5879i −0.0237428 0.0411238i
\(453\) 247.827 + 143.083i 0.547079 + 0.315856i
\(454\) 515.418i 1.13528i
\(455\) 0 0
\(456\) 8.72873 0.0191419
\(457\) −91.8900 + 159.158i −0.201072 + 0.348267i −0.948874 0.315655i \(-0.897776\pi\)
0.747802 + 0.663922i \(0.231109\pi\)
\(458\) 368.709 212.874i 0.805041 0.464790i
\(459\) −32.7840 56.7836i −0.0714249 0.123712i
\(460\) 0 0
\(461\) 28.4330i 0.0616767i −0.999524 0.0308384i \(-0.990182\pi\)
0.999524 0.0308384i \(-0.00981771\pi\)
\(462\) 4.53826 56.3073i 0.00982307 0.121877i
\(463\) −269.931 −0.583005 −0.291503 0.956570i \(-0.594155\pi\)
−0.291503 + 0.956570i \(0.594155\pi\)
\(464\) −78.5866 + 136.116i −0.169368 + 0.293353i
\(465\) 0 0
\(466\) 199.422 + 345.409i 0.427944 + 0.741221i
\(467\) 289.539 + 167.166i 0.619999 + 0.357956i 0.776868 0.629663i \(-0.216807\pi\)
−0.156870 + 0.987619i \(0.550140\pi\)
\(468\) 46.3710i 0.0990834i
\(469\) −138.941 11.1984i −0.296250 0.0238772i
\(470\) 0 0
\(471\) 165.248 286.218i 0.350845 0.607681i
\(472\) 276.612 159.702i 0.586043 0.338352i
\(473\) 127.532 + 220.892i 0.269624 + 0.467002i
\(474\) 75.4717 + 43.5736i 0.159223 + 0.0919274i
\(475\) 0 0
\(476\) −159.594 + 75.7536i −0.335281 + 0.159146i
\(477\) −155.064 −0.325081
\(478\) −58.7144 + 101.696i −0.122833 + 0.212754i
\(479\) 114.560 66.1412i 0.239165 0.138082i −0.375628 0.926771i \(-0.622573\pi\)
0.614793 + 0.788689i \(0.289240\pi\)
\(480\) 0 0
\(481\) 230.219 + 132.917i 0.478626 + 0.276335i
\(482\) 469.271i 0.973592i
\(483\) 67.4222 + 46.5253i 0.139591 + 0.0963257i
\(484\) −220.292 −0.455148
\(485\) 0 0
\(486\) 19.0919 11.0227i 0.0392837 0.0226805i
\(487\) 258.635 + 447.970i 0.531079 + 0.919856i 0.999342 + 0.0362667i \(0.0115466\pi\)
−0.468263 + 0.883589i \(0.655120\pi\)
\(488\) −64.2573 37.0989i −0.131675 0.0760224i
\(489\) 429.898i 0.879138i
\(490\) 0 0
\(491\) 484.805 0.987383 0.493692 0.869637i \(-0.335647\pi\)
0.493692 + 0.869637i \(0.335647\pi\)
\(492\) −32.6554 + 56.5609i −0.0663728 + 0.114961i
\(493\) 429.398 247.913i 0.870989 0.502866i
\(494\) −9.73701 16.8650i −0.0197105 0.0341397i
\(495\) 0 0
\(496\) 43.7286i 0.0881624i
\(497\) 347.604 503.730i 0.699404 1.01354i
\(498\) −114.336 −0.229589
\(499\) 64.6450 111.968i 0.129549 0.224385i −0.793953 0.607979i \(-0.791980\pi\)
0.923502 + 0.383594i \(0.125314\pi\)
\(500\) 0 0
\(501\) −25.3723 43.9461i −0.0506432 0.0877167i
\(502\) −513.260 296.331i −1.02243 0.590300i
\(503\) 160.905i 0.319890i 0.987126 + 0.159945i \(0.0511317\pi\)
−0.987126 + 0.159945i \(0.948868\pi\)
\(504\) −25.4700 53.6589i −0.0505357 0.106466i
\(505\) 0 0
\(506\) −15.7397 + 27.2620i −0.0311061 + 0.0538774i
\(507\) 163.905 94.6308i 0.323285 0.186649i
\(508\) 117.281 + 203.137i 0.230869 + 0.399877i
\(509\) −320.453 185.014i −0.629575 0.363485i 0.151013 0.988532i \(-0.451747\pi\)
−0.780587 + 0.625047i \(0.785080\pi\)
\(510\) 0 0
\(511\) −34.2563 + 425.027i −0.0670378 + 0.831755i
\(512\) 22.6274 0.0441942
\(513\) 4.62911 8.01785i 0.00902360 0.0156293i
\(514\) 409.012 236.143i 0.795744 0.459423i
\(515\) 0 0
\(516\) 232.259 + 134.095i 0.450115 + 0.259874i
\(517\) 42.4560i 0.0821200i
\(518\) 339.408 + 27.3556i 0.655228 + 0.0528101i
\(519\) −39.9964 −0.0770644
\(520\) 0 0
\(521\) 65.1395 37.6083i 0.125028 0.0721849i −0.436182 0.899859i \(-0.643670\pi\)
0.561210 + 0.827674i \(0.310336\pi\)
\(522\) 83.3537 + 144.373i 0.159681 + 0.276576i
\(523\) 810.701 + 468.058i 1.55010 + 0.894949i 0.998133 + 0.0610819i \(0.0194551\pi\)
0.551965 + 0.833867i \(0.313878\pi\)
\(524\) 185.389i 0.353796i
\(525\) 0 0
\(526\) 289.032 0.549491
\(527\) 68.9741 119.467i 0.130881 0.226692i
\(528\) 19.7674 11.4127i 0.0374382 0.0216149i
\(529\) 241.676 + 418.594i 0.456854 + 0.791294i
\(530\) 0 0
\(531\) 338.780i 0.638003i
\(532\) −20.5307 14.1674i −0.0385915 0.0266304i
\(533\) 145.710 0.273377
\(534\) 67.1336 116.279i 0.125718 0.217751i
\(535\) 0 0
\(536\) −28.1614 48.7770i −0.0525399 0.0910018i
\(537\) 314.152 + 181.376i 0.585014 + 0.337758i
\(538\) 197.214i 0.366569i
\(539\) −102.065 + 125.074i −0.189361 + 0.232047i
\(540\) 0 0
\(541\) 304.692 527.742i 0.563201 0.975493i −0.434013 0.900906i \(-0.642903\pi\)
0.997215 0.0745867i \(-0.0237638\pi\)
\(542\) 457.092 263.902i 0.843343 0.486904i
\(543\) 211.021 + 365.500i 0.388622 + 0.673112i
\(544\) −61.8182 35.6907i −0.113636 0.0656080i
\(545\) 0 0
\(546\) −75.2637 + 109.068i −0.137846 + 0.199759i
\(547\) −491.361 −0.898283 −0.449141 0.893461i \(-0.648270\pi\)
−0.449141 + 0.893461i \(0.648270\pi\)
\(548\) −27.4741 + 47.5865i −0.0501351 + 0.0868366i
\(549\) −68.1551 + 39.3494i −0.124144 + 0.0716746i
\(550\) 0 0
\(551\) 60.6310 + 35.0053i 0.110038 + 0.0635305i
\(552\) 33.0994i 0.0599626i
\(553\) −106.792 224.985i −0.193115 0.406844i
\(554\) −703.577 −1.27000
\(555\) 0 0
\(556\) −116.069 + 67.0127i −0.208758 + 0.120527i
\(557\) 526.110 + 911.250i 0.944543 + 1.63600i 0.756665 + 0.653803i \(0.226828\pi\)
0.187878 + 0.982192i \(0.439839\pi\)
\(558\) 40.1673 + 23.1906i 0.0719843 + 0.0415602i
\(559\) 598.339i 1.07037i
\(560\) 0 0
\(561\) −72.0060 −0.128353
\(562\) −207.026 + 358.580i −0.368374 + 0.638042i
\(563\) −670.769 + 387.269i −1.19142 + 0.687866i −0.958628 0.284661i \(-0.908119\pi\)
−0.232791 + 0.972527i \(0.574786\pi\)
\(564\) 22.3204 + 38.6601i 0.0395752 + 0.0685463i
\(565\) 0 0
\(566\) 391.406i 0.691531i
\(567\) −62.7964 5.06126i −0.110752 0.00892639i
\(568\) 247.295 0.435378
\(569\) −156.525 + 271.109i −0.275088 + 0.476466i −0.970157 0.242477i \(-0.922040\pi\)
0.695070 + 0.718942i \(0.255374\pi\)
\(570\) 0 0
\(571\) −324.711 562.416i −0.568670 0.984966i −0.996698 0.0812002i \(-0.974125\pi\)
0.428027 0.903766i \(-0.359209\pi\)
\(572\) −44.1015 25.4620i −0.0771005 0.0445140i
\(573\) 410.228i 0.715931i
\(574\) 168.611 80.0336i 0.293747 0.139431i
\(575\) 0 0
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) 891.822 514.893i 1.54562 0.892363i 0.547150 0.837035i \(-0.315713\pi\)
0.998468 0.0553284i \(-0.0176206\pi\)
\(578\) −91.7622 158.937i −0.158758 0.274977i
\(579\) 199.338 + 115.088i 0.344280 + 0.198770i
\(580\) 0 0
\(581\) 268.927 + 185.575i 0.462868 + 0.319406i
\(582\) 112.051 0.192528
\(583\) −85.1445 + 147.475i −0.146046 + 0.252958i
\(584\) −149.211 + 86.1469i −0.255498 + 0.147512i
\(585\) 0 0
\(586\) 459.646 + 265.376i 0.784378 + 0.452861i
\(587\) 791.817i 1.34892i 0.738311 + 0.674461i \(0.235624\pi\)
−0.738311 + 0.674461i \(0.764376\pi\)
\(588\) −27.1850 + 167.550i −0.0462329 + 0.284949i
\(589\) 19.4783 0.0330701
\(590\) 0 0
\(591\) −158.669 + 91.6075i −0.268475 + 0.155004i
\(592\) 68.7931 + 119.153i 0.116205 + 0.201272i
\(593\) −73.1807 42.2509i −0.123408 0.0712494i 0.437025 0.899449i \(-0.356032\pi\)
−0.560433 + 0.828200i \(0.689365\pi\)
\(594\) 24.2100i 0.0407575i
\(595\) 0 0
\(596\) 102.227 0.171522
\(597\) 174.541 302.314i 0.292364 0.506389i
\(598\) 63.9522 36.9228i 0.106943 0.0617438i
\(599\) 233.463 + 404.369i 0.389754 + 0.675074i 0.992416 0.122922i \(-0.0392266\pi\)
−0.602662 + 0.797997i \(0.705893\pi\)
\(600\) 0 0
\(601\) 1095.93i 1.82351i −0.410733 0.911756i \(-0.634727\pi\)
0.410733 0.911756i \(-0.365273\pi\)
\(602\) −328.647 692.377i −0.545925 1.15013i
\(603\) −59.7394 −0.0990702
\(604\) 165.218 286.166i 0.273540 0.473785i
\(605\) 0 0
\(606\) 112.089 + 194.144i 0.184965 + 0.320369i
\(607\) −310.815 179.449i −0.512051 0.295633i 0.221625 0.975132i \(-0.428864\pi\)
−0.733676 + 0.679499i \(0.762197\pi\)
\(608\) 10.0791i 0.0165774i
\(609\) 38.2733 474.866i 0.0628461 0.779747i
\(610\) 0 0
\(611\) 49.7975 86.2517i 0.0815016 0.141165i
\(612\) −65.5681 + 37.8558i −0.107137 + 0.0618558i
\(613\) 231.029 + 400.154i 0.376883 + 0.652780i 0.990607 0.136741i \(-0.0436627\pi\)
−0.613724 + 0.789520i \(0.710329\pi\)
\(614\) −132.008 76.2148i −0.214996 0.124128i
\(615\) 0 0
\(616\) −65.0181 5.24033i −0.105549 0.00850703i
\(617\) 219.440 0.355656 0.177828 0.984062i \(-0.443093\pi\)
0.177828 + 0.984062i \(0.443093\pi\)
\(618\) −61.8597 + 107.144i −0.100097 + 0.173372i
\(619\) 832.792 480.813i 1.34538 0.776757i 0.357791 0.933802i \(-0.383530\pi\)
0.987592 + 0.157044i \(0.0501966\pi\)
\(620\) 0 0
\(621\) 30.4037 + 17.5536i 0.0489593 + 0.0282667i
\(622\) 816.123i 1.31209i
\(623\) −346.633 + 164.534i −0.556393 + 0.264100i
\(624\) −53.5446 −0.0858087
\(625\) 0 0
\(626\) −486.560 + 280.915i −0.777252 + 0.448747i
\(627\) −5.08362 8.80509i −0.00810785 0.0140432i
\(628\) −330.496 190.812i −0.526267 0.303840i
\(629\) 434.036i 0.690041i
\(630\) 0 0
\(631\) 584.721 0.926658 0.463329 0.886186i \(-0.346655\pi\)
0.463329 + 0.886186i \(0.346655\pi\)
\(632\) 50.3144 87.1472i 0.0796115 0.137891i
\(633\) 44.4067 25.6382i 0.0701528 0.0405027i
\(634\) −56.8303 98.4329i −0.0896376 0.155257i
\(635\) 0 0
\(636\) 179.052i 0.281529i
\(637\) 354.053 134.379i 0.555813 0.210957i
\(638\) 183.076 0.286953
\(639\) 131.148 227.155i 0.205239 0.355485i
\(640\) 0 0
\(641\) −269.518 466.819i −0.420465 0.728268i 0.575520 0.817788i \(-0.304800\pi\)
−0.995985 + 0.0895205i \(0.971467\pi\)
\(642\) 199.297 + 115.064i 0.310431 + 0.179228i
\(643\) 150.959i 0.234773i −0.993086 0.117386i \(-0.962548\pi\)
0.993086 0.117386i \(-0.0374516\pi\)
\(644\) 53.7228 77.8525i 0.0834205 0.120889i
\(645\) 0 0
\(646\) −15.8979 + 27.5360i −0.0246098 + 0.0426255i
\(647\) 391.111 225.808i 0.604499 0.349008i −0.166310 0.986073i \(-0.553185\pi\)
0.770809 + 0.637066i \(0.219852\pi\)
\(648\) −12.7279 22.0454i −0.0196419 0.0340207i
\(649\) −322.199 186.022i −0.496454 0.286628i
\(650\) 0 0
\(651\) −56.8366 119.741i −0.0873067 0.183933i
\(652\) 496.404 0.761356
\(653\) −215.848 + 373.860i −0.330548 + 0.572526i −0.982619 0.185631i \(-0.940567\pi\)
0.652071 + 0.758158i \(0.273900\pi\)
\(654\) 255.853 147.717i 0.391213 0.225867i
\(655\) 0 0
\(656\) 65.3108 + 37.7072i 0.0995592 + 0.0574805i
\(657\) 182.745i 0.278151i
\(658\) 10.2488 127.160i 0.0155757 0.193252i
\(659\) −195.185 −0.296184 −0.148092 0.988974i \(-0.547313\pi\)
−0.148092 + 0.988974i \(0.547313\pi\)
\(660\) 0 0
\(661\) 596.305 344.277i 0.902126 0.520843i 0.0242368 0.999706i \(-0.492284\pi\)
0.877889 + 0.478863i \(0.158951\pi\)
\(662\) −347.926 602.626i −0.525569 0.910311i
\(663\) 146.284 + 84.4572i 0.220640 + 0.127386i
\(664\) 132.023i 0.198830i
\(665\) 0 0
\(666\) 145.932 0.219118
\(667\) −132.740 + 229.913i −0.199011 + 0.344697i
\(668\) −50.7445 + 29.2974i −0.0759649 + 0.0438583i
\(669\) 284.517 + 492.799i 0.425288 + 0.736620i
\(670\) 0 0
\(671\) 86.4259i 0.128802i
\(672\) −61.9600 + 29.4102i −0.0922024 + 0.0437652i
\(673\) 200.020 0.297206 0.148603 0.988897i \(-0.452522\pi\)
0.148603 + 0.988897i \(0.452522\pi\)
\(674\) 445.564 771.740i 0.661075 1.14501i
\(675\) 0 0
\(676\) −109.270 189.262i −0.161642 0.279973i
\(677\) 735.787 + 424.807i 1.08683 + 0.627484i 0.932732 0.360571i \(-0.117418\pi\)
0.154103 + 0.988055i \(0.450751\pi\)
\(678\) 26.2873i 0.0387719i
\(679\) −263.554 181.868i −0.388150 0.267846i
\(680\) 0 0
\(681\) 315.628 546.684i 0.463477 0.802766i
\(682\) 44.1111 25.4676i 0.0646791 0.0373425i
\(683\) 224.005 + 387.988i 0.327972 + 0.568064i 0.982109 0.188311i \(-0.0603014\pi\)
−0.654137 + 0.756376i \(0.726968\pi\)
\(684\) −9.25821 5.34523i −0.0135354 0.00781467i
\(685\) 0 0
\(686\) 335.888 349.968i 0.489632 0.510157i
\(687\) −521.433 −0.759000
\(688\) 154.839 268.190i 0.225057 0.389811i
\(689\) 345.952 199.735i 0.502107 0.289891i
\(690\) 0 0
\(691\) −337.930 195.104i −0.489044 0.282350i 0.235134 0.971963i \(-0.424447\pi\)
−0.724178 + 0.689613i \(0.757781\pi\)
\(692\) 46.1839i 0.0667397i
\(693\) −39.2946 + 56.9439i −0.0567022 + 0.0821701i
\(694\) −608.313 −0.876532
\(695\) 0 0
\(696\) 166.707 96.2485i 0.239522 0.138288i
\(697\) −118.953 206.033i −0.170664 0.295599i
\(698\) −116.574 67.3038i −0.167011 0.0964237i
\(699\) 488.482i 0.698830i
\(700\) 0 0
\(701\) 989.018 1.41087 0.705434 0.708776i \(-0.250752\pi\)
0.705434 + 0.708776i \(0.250752\pi\)
\(702\) −28.3963 + 49.1839i −0.0404506 + 0.0700625i
\(703\) 53.0751 30.6429i 0.0754980 0.0435888i
\(704\) −13.1782 22.8254i −0.0187191 0.0324224i
\(705\) 0 0
\(706\) 371.849i 0.526699i
\(707\) 51.4676 638.571i 0.0727971 0.903212i
\(708\) −391.189 −0.552527
\(709\) −554.927 + 961.161i −0.782689 + 1.35566i 0.147680 + 0.989035i \(0.452819\pi\)
−0.930370 + 0.366623i \(0.880514\pi\)
\(710\) 0 0
\(711\) −53.3665 92.4335i −0.0750584 0.130005i
\(712\) −134.267 77.5192i −0.188578 0.108875i
\(713\) 73.8617i 0.103593i
\(714\) 215.664 + 17.3821i 0.302051 + 0.0243447i
\(715\) 0 0
\(716\) 209.435 362.752i 0.292507 0.506637i
\(717\) 124.552 71.9101i 0.173713 0.100293i
\(718\) −211.263 365.918i −0.294238 0.509636i
\(719\) 936.393 + 540.627i 1.30235 + 0.751915i 0.980807 0.194979i \(-0.0624638\pi\)
0.321547 + 0.946894i \(0.395797\pi\)
\(720\) 0 0
\(721\) 319.402 151.609i 0.442999 0.210276i
\(722\) 506.042 0.700889
\(723\) −287.369 + 497.737i −0.397467 + 0.688433i
\(724\) 422.043 243.667i 0.582932 0.336556i
\(725\) 0 0
\(726\) 233.655 + 134.901i 0.321838 + 0.185813i
\(727\) 491.493i 0.676056i 0.941136 + 0.338028i \(0.109760\pi\)
−0.941136 + 0.338028i \(0.890240\pi\)
\(728\) 125.941 + 86.9070i 0.172996 + 0.119378i
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) −846.044 + 488.464i −1.15738 + 0.668213i
\(732\) 45.4367 + 78.6988i 0.0620721 + 0.107512i
\(733\) −40.4999 23.3826i −0.0552522 0.0318999i 0.472119 0.881535i \(-0.343489\pi\)
−0.527372 + 0.849635i \(0.676822\pi\)
\(734\) 186.784i 0.254474i
\(735\) 0 0
\(736\) 38.2199 0.0519292
\(737\) −32.8025 + 56.8156i −0.0445081 + 0.0770903i
\(738\) 69.2726 39.9946i 0.0938653 0.0541932i
\(739\) 368.856 + 638.878i 0.499129 + 0.864517i 0.999999 0.00100544i \(-0.000320040\pi\)
−0.500870 + 0.865522i \(0.666987\pi\)
\(740\) 0 0
\(741\) 23.8507i 0.0321872i
\(742\) 290.615 421.146i 0.391665 0.567582i
\(743\) −258.593 −0.348039 −0.174020 0.984742i \(-0.555676\pi\)
−0.174020 + 0.984742i \(0.555676\pi\)
\(744\) 26.7782 46.3812i 0.0359922 0.0623403i
\(745\) 0 0
\(746\) −7.55747 13.0899i −0.0101307 0.0175468i
\(747\) 121.271 + 70.0159i 0.162344 + 0.0937295i
\(748\) 83.1454i 0.111157i
\(749\) −282.005 594.114i −0.376509 0.793210i
\(750\) 0 0
\(751\) −175.310 + 303.645i −0.233435 + 0.404321i −0.958817 0.284025i \(-0.908330\pi\)
0.725382 + 0.688347i \(0.241663\pi\)
\(752\) 44.6409 25.7734i 0.0593628 0.0342731i
\(753\) 362.930 + 628.613i 0.481978 + 0.834811i
\(754\) −371.928 214.733i −0.493274 0.284792i
\(755\) 0 0
\(756\) −5.84424 + 72.5110i −0.00773048 + 0.0959140i
\(757\) 907.187 1.19840 0.599199 0.800600i \(-0.295486\pi\)
0.599199 + 0.800600i \(0.295486\pi\)
\(758\) −101.058 + 175.038i −0.133322 + 0.230921i
\(759\) 33.3890 19.2771i 0.0439907 0.0253981i
\(760\) 0 0
\(761\) 1067.66 + 616.416i 1.40297 + 0.810007i 0.994697 0.102851i \(-0.0327965\pi\)
0.408277 + 0.912858i \(0.366130\pi\)
\(762\) 287.280i 0.377008i
\(763\) −841.543 67.8267i −1.10294 0.0888948i
\(764\) −473.691 −0.620014
\(765\) 0 0
\(766\) 755.684 436.294i 0.986532 0.569575i
\(767\) 436.376 + 755.826i 0.568939 + 0.985432i
\(768\) −24.0000 13.8564i −0.0312500 0.0180422i
\(769\) 685.828i 0.891844i 0.895072 + 0.445922i \(0.147124\pi\)
−0.895072 + 0.445922i \(0.852876\pi\)
\(770\) 0 0
\(771\) −578.431 −0.750235
\(772\) 132.892 230.176i 0.172140 0.298155i
\(773\) 334.420 193.077i 0.432625 0.249776i −0.267839 0.963464i \(-0.586310\pi\)
0.700465 + 0.713687i \(0.252976\pi\)
\(774\) −164.232 284.458i −0.212186 0.367517i
\(775\) 0 0
\(776\) 129.386i 0.166734i
\(777\) −343.245 236.859i −0.441756 0.304838i
\(778\) −981.376 −1.26141
\(779\) 16.7962 29.0918i 0.0215612 0.0373451i
\(780\) 0 0
\(781\) −144.025 249.458i −0.184411 0.319409i
\(782\) −104.417 60.2851i −0.133525 0.0770909i
\(783\) 204.174i 0.260759i
\(784\) 193.470 + 31.3905i 0.246773 + 0.0400389i
\(785\) 0 0
\(786\) −113.527 + 196.635i −0.144437 + 0.250171i
\(787\) 1064.42 614.543i 1.35250 0.780867i 0.363902 0.931437i \(-0.381444\pi\)
0.988599 + 0.150570i \(0.0481108\pi\)
\(788\) 105.779 + 183.215i 0.134238 + 0.232506i
\(789\) −306.565 176.995i −0.388549 0.224329i
\(790\) 0 0
\(791\) 42.6663 61.8300i 0.0539397 0.0781668i
\(792\) −27.9553 −0.0352971
\(793\) 101.371 175.579i 0.127832 0.221411i
\(794\) 685.309 395.663i 0.863109 0.498316i
\(795\) 0 0
\(796\) −349.082 201.543i −0.438545 0.253194i
\(797\) 821.718i 1.03101i 0.856886 + 0.515507i \(0.172396\pi\)
−0.856886 + 0.515507i \(0.827604\pi\)
\(798\) 13.1004 + 27.5992i 0.0164165 + 0.0345855i
\(799\) −162.612 −0.203519
\(800\) 0 0
\(801\) −142.412 + 82.2215i −0.177793 + 0.102649i
\(802\) 113.990 + 197.437i 0.142132 + 0.246181i
\(803\) 173.801 + 100.344i 0.216440 + 0.124962i
\(804\) 68.9811i 0.0857973i
\(805\) 0 0
\(806\) −119.486 −0.148245
\(807\) −120.768 + 209.177i −0.149651 + 0.259203i
\(808\) 224.178 129.429i 0.277448 0.160185i
\(809\) 216.809 + 375.524i 0.267996 + 0.464184i 0.968344 0.249618i \(-0.0803051\pi\)
−0.700348 + 0.713802i \(0.746972\pi\)
\(810\) 0 0
\(811\) 1618.04i 1.99512i −0.0698416 0.997558i \(-0.522249\pi\)
0.0698416 0.997558i \(-0.477751\pi\)
\(812\) −548.328 44.1941i −0.675281 0.0544263i
\(813\) −646.425 −0.795111
\(814\) 80.1304 138.790i 0.0984403 0.170504i
\(815\) 0 0
\(816\) 43.7121 + 75.7115i 0.0535687 + 0.0927837i
\(817\) −119.461 68.9711i −0.146220 0.0844199i
\(818\) 650.286i 0.794971i
\(819\) 146.620 69.5952i 0.179023 0.0849758i
\(820\) 0 0
\(821\) 429.043 743.125i 0.522586 0.905146i −0.477068 0.878866i \(-0.658301\pi\)
0.999655 0.0262799i \(-0.00836612\pi\)
\(822\) 58.2813 33.6487i 0.0709018 0.0409352i
\(823\) 392.287 + 679.461i 0.476655 + 0.825591i 0.999642 0.0267498i \(-0.00851575\pi\)
−0.522987 + 0.852341i \(0.675182\pi\)
\(824\) 123.719 + 71.4294i 0.150145 + 0.0866862i
\(825\) 0 0
\(826\) 920.109 + 634.929i 1.11393 + 0.768680i
\(827\) −773.795 −0.935665 −0.467833 0.883817i \(-0.654965\pi\)
−0.467833 + 0.883817i \(0.654965\pi\)
\(828\) 20.2691 35.1072i 0.0244796 0.0424000i
\(829\) −573.640 + 331.191i −0.691966 + 0.399507i −0.804348 0.594158i \(-0.797485\pi\)
0.112382 + 0.993665i \(0.464152\pi\)
\(830\) 0 0
\(831\) 746.256 + 430.851i 0.898022 + 0.518473i
\(832\) 61.8280i 0.0743125i
\(833\) −479.048 390.924i −0.575087 0.469296i
\(834\) 164.147 0.196819
\(835\) 0 0
\(836\) −10.1672 + 5.87006i −0.0121618 + 0.00702161i
\(837\) −28.4025 49.1946i −0.0339337 0.0587750i
\(838\) 114.614 + 66.1723i 0.136771 + 0.0789646i
\(839\) 359.133i 0.428049i −0.976828 0.214024i \(-0.931343\pi\)
0.976828 0.214024i \(-0.0686572\pi\)
\(840\) 0 0
\(841\) 702.963 0.835866
\(842\) −115.228 + 199.581i −0.136851 + 0.237032i
\(843\) 439.169 253.554i 0.520959 0.300776i
\(844\) −29.6045 51.2764i −0.0350764 0.0607541i
\(845\) 0 0
\(846\) 54.6737i 0.0646261i
\(847\) −330.621 696.537i −0.390344 0.822357i
\(848\) 206.752 0.243811
\(849\) −239.686 + 415.149i −0.282316 + 0.488986i
\(850\) 0 0
\(851\) 116.198 + 201.261i 0.136543 + 0.236500i
\(852\) −262.296 151.437i −0.307859 0.177742i
\(853\) 1089.78i 1.27758i −0.769379 0.638792i \(-0.779434\pi\)
0.769379 0.638792i \(-0.220566\pi\)
\(854\) 20.8631 258.853i 0.0244298 0.303107i
\(855\) 0 0
\(856\) 132.865 230.128i 0.155216 0.268841i
\(857\) −56.2155 + 32.4560i −0.0655956 + 0.0378717i −0.532439 0.846468i \(-0.678724\pi\)
0.466843 + 0.884340i \(0.345391\pi\)
\(858\) 31.1845 + 54.0131i 0.0363455 + 0.0629523i
\(859\) 250.689 + 144.735i 0.291838 + 0.168493i 0.638770 0.769397i \(-0.279443\pi\)
−0.346933 + 0.937890i \(0.612777\pi\)
\(860\) 0 0
\(861\) −227.849 18.3642i −0.264633 0.0213289i
\(862\) −468.225 −0.543185
\(863\) −469.234 + 812.738i −0.543725 + 0.941759i 0.454961 + 0.890511i \(0.349653\pi\)
−0.998686 + 0.0512476i \(0.983680\pi\)
\(864\) −25.4558 + 14.6969i −0.0294628 + 0.0170103i
\(865\) 0 0
\(866\) −108.283 62.5174i −0.125038 0.0721910i
\(867\) 224.771i 0.259251i
\(868\) −138.265 + 65.6293i −0.159291 + 0.0756098i
\(869\) −117.213 −0.134882
\(870\) 0 0
\(871\) 133.280 76.9493i 0.153020 0.0883459i
\(872\) −170.569 295.434i −0.195606 0.338800i
\(873\) −118.848 68.6171i −0.136138 0.0785992i
\(874\) 17.0245i 0.0194788i
\(875\) 0 0
\(876\) 211.016 0.240886
\(877\) −110.543 + 191.465i −0.126046 + 0.218318i −0.922141 0.386853i \(-0.873562\pi\)
0.796095 + 0.605171i \(0.206895\pi\)
\(878\) 85.5044 49.3660i 0.0973855 0.0562255i
\(879\) −325.019 562.949i −0.369759 0.640442i
\(880\) 0 0
\(881\) 154.796i 0.175704i −0.996134 0.0878522i \(-0.972000\pi\)
0.996134 0.0878522i \(-0.0280003\pi\)
\(882\) 131.437 161.066i 0.149022 0.182615i
\(883\) −1267.40 −1.43534 −0.717668 0.696385i \(-0.754791\pi\)
−0.717668 + 0.696385i \(0.754791\pi\)
\(884\) 97.5227 168.914i 0.110320 0.191080i
\(885\) 0 0
\(886\) −466.997 808.863i −0.527085 0.912938i
\(887\) −1434.83 828.399i −1.61762 0.933934i −0.987533 0.157410i \(-0.949686\pi\)
−0.630087 0.776524i \(-0.716981\pi\)
\(888\) 168.508i 0.189761i
\(889\) −466.277 + 675.706i −0.524496 + 0.760074i
\(890\) 0 0
\(891\) −14.8255 + 25.6786i −0.0166392 + 0.0288199i
\(892\) 569.035 328.532i 0.637931 0.368310i
\(893\) −11.4804 19.8846i −0.0128560 0.0222672i
\(894\) −108.428 62.6009i −0.121284 0.0700234i
\(895\) 0 0
\(896\) 33.9600 + 71.5452i 0.0379018 + 0.0798496i
\(897\) −90.4420 −0.100827
\(898\) 396.174 686.193i 0.441173 0.764135i
\(899\) 372.010 214.780i 0.413804 0.238910i
\(900\) 0 0
\(901\) −564.847 326.114i −0.626911 0.361947i
\(902\) 87.8430i 0.0973869i
\(903\) −75.4099 + 935.630i −0.0835105 + 1.03614i
\(904\) 30.3540 0.0335774
\(905\) 0 0
\(906\) −350.480 + 202.350i −0.386844 + 0.223344i
\(907\) 368.230 + 637.793i 0.405987 + 0.703190i 0.994436 0.105345i \(-0.0335946\pi\)
−0.588449 + 0.808534i \(0.700261\pi\)
\(908\) −631.256 364.456i −0.695216 0.401383i
\(909\) 274.561i 0.302047i
\(910\) 0 0
\(911\) 197.935 0.217273 0.108636 0.994082i \(-0.465352\pi\)
0.108636 + 0.994082i \(0.465352\pi\)
\(912\) −6.17214 + 10.6905i −0.00676770 + 0.0117220i
\(913\) 133.178 76.8905i 0.145869 0.0842175i
\(914\) −129.952 225.084i −0.142180 0.246262i
\(915\) 0 0
\(916\) 602.099i 0.657313i
\(917\) 586.178 278.238i 0.639235 0.303422i
\(918\) 92.7273 0.101010
\(919\) −821.091 + 1422.17i −0.893462 + 1.54752i −0.0577645 + 0.998330i \(0.518397\pi\)
−0.835697 + 0.549191i \(0.814936\pi\)
\(920\) 0 0
\(921\) 93.3436 + 161.676i 0.101350 + 0.175544i
\(922\) 34.8231 + 20.1051i 0.0377691 + 0.0218060i
\(923\) 675.718i 0.732089i
\(924\) 65.7531 + 45.3735i 0.0711614 + 0.0491055i
\(925\) 0 0
\(926\) 190.870 330.597i 0.206123 0.357016i
\(927\) 131.224 75.7623i 0.141558 0.0817285i
\(928\) −111.138 192.497i −0.119761 0.207432i
\(929\) 1317.18 + 760.473i 1.41784 + 0.818593i 0.996109 0.0881263i \(-0.0280879\pi\)
0.421735 + 0.906719i \(0.361421\pi\)
\(930\) 0 0
\(931\) 13.9825 86.1785i 0.0150188 0.0925655i
\(932\) −564.050 −0.605204
\(933\) −499.771 + 865.629i −0.535660 + 0.927791i
\(934\) −409.471 + 236.408i −0.438405 + 0.253113i
\(935\) 0 0
\(936\) 56.7927 + 32.7893i 0.0606759 + 0.0350313i
\(937\) 682.636i 0.728534i −0.931295 0.364267i \(-0.881320\pi\)
0.931295 0.364267i \(-0.118680\pi\)
\(938\) 111.961 162.249i 0.119362 0.172974i
\(939\) 688.100 0.732800
\(940\) 0 0
\(941\) −248.545 + 143.497i −0.264129 + 0.152495i −0.626216 0.779649i \(-0.715397\pi\)
0.362088 + 0.932144i \(0.382064\pi\)
\(942\) 233.696 + 404.773i 0.248085 + 0.429695i
\(943\) 110.316 + 63.6911i 0.116984 + 0.0675410i
\(944\) 451.706i 0.478502i
\(945\) 0 0
\(946\) −360.715 −0.381305
\(947\) −240.057 + 415.790i −0.253492 + 0.439061i −0.964485 0.264139i \(-0.914912\pi\)
0.710993 + 0.703199i \(0.248246\pi\)
\(948\) −106.733 + 61.6224i −0.112588 + 0.0650025i
\(949\) −235.391 407.709i −0.248041 0.429620i
\(950\) 0 0
\(951\) 139.205i 0.146378i
\(952\) 20.0711 249.028i 0.0210831 0.261584i
\(953\) 1147.30 1.20388 0.601941 0.798540i \(-0.294394\pi\)
0.601941 + 0.798540i \(0.294394\pi\)
\(954\) 109.647 189.914i 0.114934 0.199071i
\(955\) 0 0
\(956\) −83.0347 143.820i −0.0868563 0.150440i
\(957\) −194.181 112.111i −0.202906 0.117148i
\(958\) 187.076i 0.195277i
\(959\) −191.697 15.4504i −0.199892 0.0161109i
\(960\) 0 0
\(961\) −420.744 + 728.750i −0.437819 + 0.758325i
\(962\) −325.579 + 187.973i −0.338439 + 0.195398i
\(963\) −140.924 244.088i −0.146339 0.253466i
\(964\) 574.737 + 331.825i 0.596201 + 0.344217i
\(965\) 0 0
\(966\) −104.656 + 49.6767i −0.108340 + 0.0514251i
\(967\) −1400.07 −1.44785 −0.723923 0.689881i \(-0.757663\pi\)
−0.723923 + 0.689881i \(0.757663\pi\)
\(968\) 155.770 269.801i 0.160919 0.278720i
\(969\) 33.7246 19.4709i 0.0348035 0.0200938i
\(970\) 0 0
\(971\) 226.263 + 130.633i 0.233020 + 0.134534i 0.611965 0.790885i \(-0.290379\pi\)
−0.378944 + 0.925419i \(0.623713\pi\)
\(972\) 31.1769i 0.0320750i
\(973\) −386.087 266.423i −0.396801 0.273816i
\(974\) −731.532 −0.751059
\(975\) 0 0
\(976\) 90.8735 52.4658i 0.0931081 0.0537560i
\(977\) −389.723 675.019i −0.398897 0.690910i 0.594693 0.803953i \(-0.297274\pi\)
−0.993590 + 0.113043i \(0.963940\pi\)
\(978\) −526.516 303.984i −0.538360 0.310822i
\(979\) 180.589i 0.184463i
\(980\) 0 0
\(981\) −361.831 −0.368839
\(982\) −342.809 + 593.763i −0.349093 + 0.604646i
\(983\) −1332.15 + 769.118i −1.35519 + 0.782419i −0.988971 0.148110i \(-0.952681\pi\)
−0.366219 + 0.930529i \(0.619348\pi\)
\(984\) −46.1817 79.9891i −0.0469327 0.0812898i
\(985\) 0 0
\(986\) 701.204i 0.711160i
\(987\) −88.7395 + 128.597i −0.0899083 + 0.130291i
\(988\) 27.5404 0.0278749
\(989\) 261.539 452.998i 0.264448 0.458037i
\(990\) 0 0
\(991\) −482.270 835.316i −0.486650 0.842902i 0.513233 0.858250i \(-0.328448\pi\)
−0.999882 + 0.0153476i \(0.995115\pi\)
\(992\) −53.5563 30.9208i −0.0539883 0.0311701i
\(993\) 852.242i 0.858250i
\(994\) 371.148 + 781.917i 0.373389 + 0.786637i
\(995\) 0 0
\(996\) 80.8474 140.032i 0.0811721 0.140594i
\(997\) 361.770 208.868i 0.362858 0.209496i −0.307476 0.951556i \(-0.599484\pi\)
0.670334 + 0.742060i \(0.266151\pi\)
\(998\) 91.4218 + 158.347i 0.0916050 + 0.158664i
\(999\) −154.785 89.3649i −0.154939 0.0894543i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.3.p.d.901.2 yes 8
5.2 odd 4 1050.3.q.b.649.2 16
5.3 odd 4 1050.3.q.b.649.7 16
5.4 even 2 1050.3.p.c.901.3 yes 8
7.3 odd 6 inner 1050.3.p.d.451.2 yes 8
35.3 even 12 1050.3.q.b.199.2 16
35.17 even 12 1050.3.q.b.199.7 16
35.24 odd 6 1050.3.p.c.451.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1050.3.p.c.451.3 8 35.24 odd 6
1050.3.p.c.901.3 yes 8 5.4 even 2
1050.3.p.d.451.2 yes 8 7.3 odd 6 inner
1050.3.p.d.901.2 yes 8 1.1 even 1 trivial
1050.3.q.b.199.2 16 35.3 even 12
1050.3.q.b.199.7 16 35.17 even 12
1050.3.q.b.649.2 16 5.2 odd 4
1050.3.q.b.649.7 16 5.3 odd 4