L(s) = 1 | + (1.36 + 0.366i)2-s + 2i·3-s + (1.73 + i)4-s − 3.46i·5-s + (−0.732 + 2.73i)6-s − 4.73·7-s + (1.99 + 2i)8-s − 9-s + (1.26 − 4.73i)10-s − 1.26i·11-s + (−2 + 3.46i)12-s + i·13-s + (−6.46 − 1.73i)14-s + 6.92·15-s + (1.99 + 3.46i)16-s − 1.46·17-s + ⋯ |
L(s) = 1 | + (0.965 + 0.258i)2-s + 1.15i·3-s + (0.866 + 0.5i)4-s − 1.54i·5-s + (−0.298 + 1.11i)6-s − 1.78·7-s + (0.707 + 0.707i)8-s − 0.333·9-s + (0.400 − 1.49i)10-s − 0.382i·11-s + (−0.577 + 0.999i)12-s + 0.277i·13-s + (−1.72 − 0.462i)14-s + 1.78·15-s + (0.499 + 0.866i)16-s − 0.355·17-s + ⋯ |
Λ(s)=(=(104s/2ΓC(s)L(s)(0.707−0.707i)Λ(2−s)
Λ(s)=(=(104s/2ΓC(s+1/2)L(s)(0.707−0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
104
= 23⋅13
|
Sign: |
0.707−0.707i
|
Analytic conductor: |
0.830444 |
Root analytic conductor: |
0.911287 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ104(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 104, ( :1/2), 0.707−0.707i)
|
Particular Values
L(1) |
≈ |
1.41988+0.588134i |
L(21) |
≈ |
1.41988+0.588134i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.36−0.366i)T |
| 13 | 1−iT |
good | 3 | 1−2iT−3T2 |
| 5 | 1+3.46iT−5T2 |
| 7 | 1+4.73T+7T2 |
| 11 | 1+1.26iT−11T2 |
| 17 | 1+1.46T+17T2 |
| 19 | 1+2.73iT−19T2 |
| 23 | 1−4T+23T2 |
| 29 | 1−2iT−29T2 |
| 31 | 1+3.26T+31T2 |
| 37 | 1−4.92iT−37T2 |
| 41 | 1+4.92T+41T2 |
| 43 | 1+7.46iT−43T2 |
| 47 | 1−3.26T+47T2 |
| 53 | 1−10.9iT−53T2 |
| 59 | 1−0.196iT−59T2 |
| 61 | 1+10.9iT−61T2 |
| 67 | 1+2.73iT−67T2 |
| 71 | 1−2.19T+71T2 |
| 73 | 1+0.535T+73T2 |
| 79 | 1+1.46T+79T2 |
| 83 | 1−6.73iT−83T2 |
| 89 | 1−17.3T+89T2 |
| 97 | 1+14.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.66713348460551342477738804601, −12.97108562948306335020693325602, −12.21653871489260166528855857102, −10.78546377761365198318805053420, −9.514710332505391917145492678906, −8.769027114441600982185064524032, −6.85944620926091183156489416071, −5.50205270731119407441896095195, −4.48177866106527543337411071211, −3.35667813713256326653348392359,
2.48106307219566836217102578034, 3.56327089894437307225813162307, 6.03341198059096965809599785503, 6.75796848113682246252332617157, 7.37029897698755686362765248658, 9.789178435230406437411541607628, 10.64765648977790656680617448684, 11.88890447864364030441797403380, 12.88038802413954090975969281922, 13.36245056849728059608579069507