L(s) = 1 | + (1.36 − 0.366i)2-s − 2i·3-s + (1.73 − i)4-s + 3.46i·5-s + (−0.732 − 2.73i)6-s − 4.73·7-s + (1.99 − 2i)8-s − 9-s + (1.26 + 4.73i)10-s + 1.26i·11-s + (−2 − 3.46i)12-s − i·13-s + (−6.46 + 1.73i)14-s + 6.92·15-s + (1.99 − 3.46i)16-s − 1.46·17-s + ⋯ |
L(s) = 1 | + (0.965 − 0.258i)2-s − 1.15i·3-s + (0.866 − 0.5i)4-s + 1.54i·5-s + (−0.298 − 1.11i)6-s − 1.78·7-s + (0.707 − 0.707i)8-s − 0.333·9-s + (0.400 + 1.49i)10-s + 0.382i·11-s + (−0.577 − 0.999i)12-s − 0.277i·13-s + (−1.72 + 0.462i)14-s + 1.78·15-s + (0.499 − 0.866i)16-s − 0.355·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.41988 - 0.588134i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.41988 - 0.588134i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.36 + 0.366i)T \) |
| 13 | \( 1 + iT \) |
good | 3 | \( 1 + 2iT - 3T^{2} \) |
| 5 | \( 1 - 3.46iT - 5T^{2} \) |
| 7 | \( 1 + 4.73T + 7T^{2} \) |
| 11 | \( 1 - 1.26iT - 11T^{2} \) |
| 17 | \( 1 + 1.46T + 17T^{2} \) |
| 19 | \( 1 - 2.73iT - 19T^{2} \) |
| 23 | \( 1 - 4T + 23T^{2} \) |
| 29 | \( 1 + 2iT - 29T^{2} \) |
| 31 | \( 1 + 3.26T + 31T^{2} \) |
| 37 | \( 1 + 4.92iT - 37T^{2} \) |
| 41 | \( 1 + 4.92T + 41T^{2} \) |
| 43 | \( 1 - 7.46iT - 43T^{2} \) |
| 47 | \( 1 - 3.26T + 47T^{2} \) |
| 53 | \( 1 + 10.9iT - 53T^{2} \) |
| 59 | \( 1 + 0.196iT - 59T^{2} \) |
| 61 | \( 1 - 10.9iT - 61T^{2} \) |
| 67 | \( 1 - 2.73iT - 67T^{2} \) |
| 71 | \( 1 - 2.19T + 71T^{2} \) |
| 73 | \( 1 + 0.535T + 73T^{2} \) |
| 79 | \( 1 + 1.46T + 79T^{2} \) |
| 83 | \( 1 + 6.73iT - 83T^{2} \) |
| 89 | \( 1 - 17.3T + 89T^{2} \) |
| 97 | \( 1 + 14.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.36245056849728059608579069507, −12.88038802413954090975969281922, −11.88890447864364030441797403380, −10.64765648977790656680617448684, −9.789178435230406437411541607628, −7.37029897698755686362765248658, −6.75796848113682246252332617157, −6.03341198059096965809599785503, −3.56327089894437307225813162307, −2.48106307219566836217102578034,
3.35667813713256326653348392359, 4.48177866106527543337411071211, 5.50205270731119407441896095195, 6.85944620926091183156489416071, 8.769027114441600982185064524032, 9.514710332505391917145492678906, 10.78546377761365198318805053420, 12.21653871489260166528855857102, 12.97108562948306335020693325602, 13.66713348460551342477738804601