Properties

Label 16-6336e8-1.1-c1e8-0-7
Degree $16$
Conductor $2.597\times 10^{30}$
Sign $1$
Analytic cond. $4.29277\times 10^{13}$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16·25-s + 48·41-s − 32·49-s + 16·73-s + 96·89-s + 32·97-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 32·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + ⋯
L(s)  = 1  + 16/5·25-s + 7.49·41-s − 4.57·49-s + 1.87·73-s + 10.1·89-s + 3.24·97-s − 0.363·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2.46·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 3^{16} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 3^{16} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{48} \cdot 3^{16} \cdot 11^{8}\)
Sign: $1$
Analytic conductor: \(4.29277\times 10^{13}\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{48} \cdot 3^{16} \cdot 11^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(34.67098919\)
\(L(\frac12)\) \(\approx\) \(34.67098919\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( ( 1 + T^{2} )^{4} \)
good5 \( ( 1 - 8 T^{2} + 42 T^{4} - 8 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
7 \( ( 1 + 16 T^{2} + 138 T^{4} + 16 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
13 \( ( 1 - 16 T^{2} + 378 T^{4} - 16 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
17 \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{4} \)
19 \( ( 1 - 20 T^{2} + 438 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
23 \( ( 1 + 56 T^{2} + 1626 T^{4} + 56 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
29 \( ( 1 + 28 T^{2} + 1494 T^{4} + 28 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
31 \( ( 1 + 76 T^{2} + 2982 T^{4} + 76 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
37 \( ( 1 - 4 T^{2} - 714 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
41 \( ( 1 - 12 T + 94 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{4} \)
43 \( ( 1 - 116 T^{2} + 6678 T^{4} - 116 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
47 \( ( 1 + 152 T^{2} + 9978 T^{4} + 152 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
53 \( ( 1 - 104 T^{2} + 8106 T^{4} - 104 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
59 \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{4} \)
61 \( ( 1 - 208 T^{2} + 18042 T^{4} - 208 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
67 \( ( 1 - 68 T^{2} + 8598 T^{4} - 68 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
71 \( ( 1 + 56 T^{2} - 1830 T^{4} + 56 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
73 \( ( 1 - 2 T + p T^{2} )^{8} \)
79 \( ( 1 + 112 T^{2} + 12714 T^{4} + 112 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
83 \( ( 1 - 212 T^{2} + 21558 T^{4} - 212 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
89 \( ( 1 - 12 T + p T^{2} )^{8} \)
97 \( ( 1 - 8 T - 6 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.22806802983349717416065452140, −3.11415688392008131705966439527, −2.95392231377222884332068811233, −2.87333818320194404337166707481, −2.83755583213773359356486548647, −2.74004129656082703699694734762, −2.72686213218881376643333550508, −2.67345771274800535141410775265, −2.30863437715804307949434986812, −2.24422136812895632321502502677, −1.98718290297241218075238860982, −1.97159010935142060509419199948, −1.92103583695108250414919525920, −1.82897615411541869234339830085, −1.80844668664243555006131034366, −1.66672436096604417287686243087, −1.45186774686040189008803610468, −0.958186791227966243401400480265, −0.910582070331261140799994826724, −0.872247205894755606671260712685, −0.77103196823814794111030101900, −0.76922046417317219103664321421, −0.73671199270499224545945157862, −0.46547243591447458092884040405, −0.23620540459630930340958435454, 0.23620540459630930340958435454, 0.46547243591447458092884040405, 0.73671199270499224545945157862, 0.76922046417317219103664321421, 0.77103196823814794111030101900, 0.872247205894755606671260712685, 0.910582070331261140799994826724, 0.958186791227966243401400480265, 1.45186774686040189008803610468, 1.66672436096604417287686243087, 1.80844668664243555006131034366, 1.82897615411541869234339830085, 1.92103583695108250414919525920, 1.97159010935142060509419199948, 1.98718290297241218075238860982, 2.24422136812895632321502502677, 2.30863437715804307949434986812, 2.67345771274800535141410775265, 2.72686213218881376643333550508, 2.74004129656082703699694734762, 2.83755583213773359356486548647, 2.87333818320194404337166707481, 2.95392231377222884332068811233, 3.11415688392008131705966439527, 3.22806802983349717416065452140

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.