Properties

Label 6336.2.f.j.3169.4
Level $6336$
Weight $2$
Character 6336.3169
Analytic conductor $50.593$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6336,2,Mod(3169,6336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6336.3169"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6336 = 2^{6} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6336.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-8,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(41)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.5932147207\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.3057647616.6
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 30x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3169.4
Root \(0.524648 - 0.524648i\) of defining polynomial
Character \(\chi\) \(=\) 6336.3169
Dual form 6336.2.f.j.3169.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.04930i q^{5} +1.04930 q^{7} -1.00000i q^{11} -3.61953i q^{13} +4.89898 q^{17} -2.89898i q^{19} +5.71812 q^{23} +3.89898 q^{25} +7.23907i q^{29} +2.09859 q^{31} -1.10102i q^{35} +11.4362i q^{37} +1.10102 q^{41} +2.89898i q^{43} +5.71812 q^{47} -5.89898 q^{49} -8.28836i q^{53} -1.04930 q^{55} -9.79796i q^{59} +5.71812i q^{61} -3.79796 q^{65} +7.79796i q^{67} -15.0558 q^{71} +2.00000 q^{73} -1.04930i q^{77} +12.4855 q^{79} -1.10102i q^{83} -5.14048i q^{85} +12.0000 q^{89} -3.79796i q^{91} -3.04189 q^{95} -10.6969 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{25} + 48 q^{41} - 8 q^{49} + 48 q^{65} + 16 q^{73} + 96 q^{89} + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6336\mathbb{Z}\right)^\times\).

\(n\) \(1729\) \(3521\) \(4159\) \(4357\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 1.04930i − 0.469259i −0.972085 0.234630i \(-0.924612\pi\)
0.972085 0.234630i \(-0.0753877\pi\)
\(6\) 0 0
\(7\) 1.04930 0.396596 0.198298 0.980142i \(-0.436459\pi\)
0.198298 + 0.980142i \(0.436459\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 1.00000i − 0.301511i
\(12\) 0 0
\(13\) − 3.61953i − 1.00388i −0.864903 0.501939i \(-0.832620\pi\)
0.864903 0.501939i \(-0.167380\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.89898 1.18818 0.594089 0.804400i \(-0.297513\pi\)
0.594089 + 0.804400i \(0.297513\pi\)
\(18\) 0 0
\(19\) − 2.89898i − 0.665072i −0.943091 0.332536i \(-0.892096\pi\)
0.943091 0.332536i \(-0.107904\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.71812 1.19231 0.596156 0.802869i \(-0.296694\pi\)
0.596156 + 0.802869i \(0.296694\pi\)
\(24\) 0 0
\(25\) 3.89898 0.779796
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.23907i 1.34426i 0.740433 + 0.672130i \(0.234621\pi\)
−0.740433 + 0.672130i \(0.765379\pi\)
\(30\) 0 0
\(31\) 2.09859 0.376918 0.188459 0.982081i \(-0.439651\pi\)
0.188459 + 0.982081i \(0.439651\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 1.10102i − 0.186106i
\(36\) 0 0
\(37\) 11.4362i 1.88011i 0.341026 + 0.940054i \(0.389225\pi\)
−0.341026 + 0.940054i \(0.610775\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.10102 0.171951 0.0859753 0.996297i \(-0.472599\pi\)
0.0859753 + 0.996297i \(0.472599\pi\)
\(42\) 0 0
\(43\) 2.89898i 0.442090i 0.975264 + 0.221045i \(0.0709468\pi\)
−0.975264 + 0.221045i \(0.929053\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.71812 0.834074 0.417037 0.908889i \(-0.363069\pi\)
0.417037 + 0.908889i \(0.363069\pi\)
\(48\) 0 0
\(49\) −5.89898 −0.842711
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 8.28836i − 1.13849i −0.822167 0.569247i \(-0.807235\pi\)
0.822167 0.569247i \(-0.192765\pi\)
\(54\) 0 0
\(55\) −1.04930 −0.141487
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 9.79796i − 1.27559i −0.770208 0.637793i \(-0.779848\pi\)
0.770208 0.637793i \(-0.220152\pi\)
\(60\) 0 0
\(61\) 5.71812i 0.732131i 0.930589 + 0.366065i \(0.119295\pi\)
−0.930589 + 0.366065i \(0.880705\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.79796 −0.471079
\(66\) 0 0
\(67\) 7.79796i 0.952672i 0.879263 + 0.476336i \(0.158035\pi\)
−0.879263 + 0.476336i \(0.841965\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −15.0558 −1.78679 −0.893396 0.449270i \(-0.851684\pi\)
−0.893396 + 0.449270i \(0.851684\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 1.04930i − 0.119578i
\(78\) 0 0
\(79\) 12.4855 1.40473 0.702367 0.711815i \(-0.252127\pi\)
0.702367 + 0.711815i \(0.252127\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 1.10102i − 0.120853i −0.998173 0.0604264i \(-0.980754\pi\)
0.998173 0.0604264i \(-0.0192460\pi\)
\(84\) 0 0
\(85\) − 5.14048i − 0.557563i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12.0000 1.27200 0.635999 0.771690i \(-0.280588\pi\)
0.635999 + 0.771690i \(0.280588\pi\)
\(90\) 0 0
\(91\) − 3.79796i − 0.398134i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.04189 −0.312091
\(96\) 0 0
\(97\) −10.6969 −1.08611 −0.543055 0.839697i \(-0.682732\pi\)
−0.543055 + 0.839697i \(0.682732\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 9.33766i − 0.929132i −0.885539 0.464566i \(-0.846210\pi\)
0.885539 0.464566i \(-0.153790\pi\)
\(102\) 0 0
\(103\) −14.4781 −1.42657 −0.713286 0.700873i \(-0.752794\pi\)
−0.713286 + 0.700873i \(0.752794\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 12.0000i − 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0 0
\(109\) − 7.81671i − 0.748705i −0.927286 0.374353i \(-0.877865\pi\)
0.927286 0.374353i \(-0.122135\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.79796 0.921714 0.460857 0.887474i \(-0.347542\pi\)
0.460857 + 0.887474i \(0.347542\pi\)
\(114\) 0 0
\(115\) − 6.00000i − 0.559503i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.14048 0.471227
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 9.33766i − 0.835185i
\(126\) 0 0
\(127\) −10.3870 −0.921693 −0.460846 0.887480i \(-0.652454\pi\)
−0.460846 + 0.887480i \(0.652454\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 20.6969i − 1.80830i −0.427215 0.904150i \(-0.640505\pi\)
0.427215 0.904150i \(-0.359495\pi\)
\(132\) 0 0
\(133\) − 3.04189i − 0.263765i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 21.7980 1.86233 0.931163 0.364604i \(-0.118796\pi\)
0.931163 + 0.364604i \(0.118796\pi\)
\(138\) 0 0
\(139\) 6.89898i 0.585164i 0.956240 + 0.292582i \(0.0945144\pi\)
−0.956240 + 0.292582i \(0.905486\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.61953 −0.302681
\(144\) 0 0
\(145\) 7.59592 0.630807
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.6334i 1.28074i 0.768066 + 0.640370i \(0.221219\pi\)
−0.768066 + 0.640370i \(0.778781\pi\)
\(150\) 0 0
\(151\) 17.6260 1.43439 0.717193 0.696875i \(-0.245427\pi\)
0.717193 + 0.696875i \(0.245427\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 2.20204i − 0.176872i
\(156\) 0 0
\(157\) 3.04189i 0.242769i 0.992606 + 0.121384i \(0.0387334\pi\)
−0.992606 + 0.121384i \(0.961267\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) − 4.00000i − 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.19718 −0.324788 −0.162394 0.986726i \(-0.551921\pi\)
−0.162394 + 0.986726i \(0.551921\pi\)
\(168\) 0 0
\(169\) −0.101021 −0.00777081
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 15.6334i 1.18859i 0.804248 + 0.594294i \(0.202568\pi\)
−0.804248 + 0.594294i \(0.797432\pi\)
\(174\) 0 0
\(175\) 4.09118 0.309264
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 2.20204i − 0.164588i −0.996608 0.0822941i \(-0.973775\pi\)
0.996608 0.0822941i \(-0.0262247\pi\)
\(180\) 0 0
\(181\) − 4.19718i − 0.311974i −0.987759 0.155987i \(-0.950144\pi\)
0.987759 0.155987i \(-0.0498558\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 12.0000 0.882258
\(186\) 0 0
\(187\) − 4.89898i − 0.358249i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.52094 0.110052 0.0550258 0.998485i \(-0.482476\pi\)
0.0550258 + 0.998485i \(0.482476\pi\)
\(192\) 0 0
\(193\) 11.7980 0.849236 0.424618 0.905373i \(-0.360408\pi\)
0.424618 + 0.905373i \(0.360408\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 13.5348i 0.964317i 0.876084 + 0.482159i \(0.160147\pi\)
−0.876084 + 0.482159i \(0.839853\pi\)
\(198\) 0 0
\(199\) 16.5767 1.17509 0.587546 0.809190i \(-0.300094\pi\)
0.587546 + 0.809190i \(0.300094\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 7.59592i 0.533129i
\(204\) 0 0
\(205\) − 1.15530i − 0.0806893i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.89898 −0.200527
\(210\) 0 0
\(211\) − 16.6969i − 1.14946i −0.818341 0.574732i \(-0.805106\pi\)
0.818341 0.574732i \(-0.194894\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.04189 0.207455
\(216\) 0 0
\(217\) 2.20204 0.149484
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 17.7320i − 1.19278i
\(222\) 0 0
\(223\) −18.6753 −1.25059 −0.625296 0.780388i \(-0.715022\pi\)
−0.625296 + 0.780388i \(0.715022\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 21.7980i − 1.44678i −0.690439 0.723391i \(-0.742583\pi\)
0.690439 0.723391i \(-0.257417\pi\)
\(228\) 0 0
\(229\) 11.4362i 0.755728i 0.925861 + 0.377864i \(0.123341\pi\)
−0.925861 + 0.377864i \(0.876659\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 22.8990 1.50016 0.750081 0.661346i \(-0.230014\pi\)
0.750081 + 0.661346i \(0.230014\pi\)
\(234\) 0 0
\(235\) − 6.00000i − 0.391397i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 14.4781 0.936513 0.468256 0.883593i \(-0.344882\pi\)
0.468256 + 0.883593i \(0.344882\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.18977i 0.395450i
\(246\) 0 0
\(247\) −10.4930 −0.667651
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 21.7980i − 1.37587i −0.725770 0.687937i \(-0.758516\pi\)
0.725770 0.687937i \(-0.241484\pi\)
\(252\) 0 0
\(253\) − 5.71812i − 0.359495i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7.59592 −0.473820 −0.236910 0.971532i \(-0.576135\pi\)
−0.236910 + 0.971532i \(0.576135\pi\)
\(258\) 0 0
\(259\) 12.0000i 0.745644i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −15.6334 −0.963998 −0.481999 0.876172i \(-0.660089\pi\)
−0.481999 + 0.876172i \(0.660089\pi\)
\(264\) 0 0
\(265\) −8.69694 −0.534249
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.24648i 0.319883i 0.987126 + 0.159942i \(0.0511306\pi\)
−0.987126 + 0.159942i \(0.948869\pi\)
\(270\) 0 0
\(271\) −28.1190 −1.70811 −0.854053 0.520186i \(-0.825863\pi\)
−0.854053 + 0.520186i \(0.825863\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 3.89898i − 0.235117i
\(276\) 0 0
\(277\) 2.67624i 0.160800i 0.996763 + 0.0803998i \(0.0256197\pi\)
−0.996763 + 0.0803998i \(0.974380\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 19.1010 1.13947 0.569736 0.821828i \(-0.307046\pi\)
0.569736 + 0.821828i \(0.307046\pi\)
\(282\) 0 0
\(283\) 18.8990i 1.12343i 0.827332 + 0.561714i \(0.189858\pi\)
−0.827332 + 0.561714i \(0.810142\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.15530 0.0681949
\(288\) 0 0
\(289\) 7.00000 0.411765
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 17.7320i − 1.03592i −0.855406 0.517958i \(-0.826692\pi\)
0.855406 0.517958i \(-0.173308\pi\)
\(294\) 0 0
\(295\) −10.2810 −0.598580
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 20.6969i − 1.19693i
\(300\) 0 0
\(301\) 3.04189i 0.175331i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.00000 0.343559
\(306\) 0 0
\(307\) 12.6969i 0.724653i 0.932051 + 0.362326i \(0.118017\pi\)
−0.932051 + 0.362326i \(0.881983\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −6.66142 −0.377734 −0.188867 0.982003i \(-0.560482\pi\)
−0.188867 + 0.982003i \(0.560482\pi\)
\(312\) 0 0
\(313\) −14.0000 −0.791327 −0.395663 0.918396i \(-0.629485\pi\)
−0.395663 + 0.918396i \(0.629485\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 21.8232i 1.22571i 0.790194 + 0.612856i \(0.209980\pi\)
−0.790194 + 0.612856i \(0.790020\pi\)
\(318\) 0 0
\(319\) 7.23907 0.405310
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 14.2020i − 0.790223i
\(324\) 0 0
\(325\) − 14.1125i − 0.782820i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 6.00000 0.330791
\(330\) 0 0
\(331\) − 4.00000i − 0.219860i −0.993939 0.109930i \(-0.964937\pi\)
0.993939 0.109930i \(-0.0350627\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 8.18236 0.447050
\(336\) 0 0
\(337\) 0.202041 0.0110059 0.00550294 0.999985i \(-0.498248\pi\)
0.00550294 + 0.999985i \(0.498248\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 2.09859i − 0.113645i
\(342\) 0 0
\(343\) −13.5348 −0.730813
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 1.10102i − 0.0591059i −0.999563 0.0295529i \(-0.990592\pi\)
0.999563 0.0295529i \(-0.00940836\pi\)
\(348\) 0 0
\(349\) − 22.2948i − 1.19342i −0.802459 0.596708i \(-0.796475\pi\)
0.802459 0.596708i \(-0.203525\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 7.59592 0.404290 0.202145 0.979356i \(-0.435209\pi\)
0.202145 + 0.979356i \(0.435209\pi\)
\(354\) 0 0
\(355\) 15.7980i 0.838469i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 30.1116 1.58923 0.794614 0.607115i \(-0.207673\pi\)
0.794614 + 0.607115i \(0.207673\pi\)
\(360\) 0 0
\(361\) 10.5959 0.557680
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 2.09859i − 0.109845i
\(366\) 0 0
\(367\) 27.0697 1.41303 0.706513 0.707700i \(-0.250267\pi\)
0.706513 + 0.707700i \(0.250267\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 8.69694i − 0.451523i
\(372\) 0 0
\(373\) 3.61953i 0.187412i 0.995600 + 0.0937062i \(0.0298714\pi\)
−0.995600 + 0.0937062i \(0.970129\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 26.2020 1.34947
\(378\) 0 0
\(379\) − 10.2020i − 0.524044i −0.965062 0.262022i \(-0.915611\pi\)
0.965062 0.262022i \(-0.0843892\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −13.9005 −0.710282 −0.355141 0.934813i \(-0.615567\pi\)
−0.355141 + 0.934813i \(0.615567\pi\)
\(384\) 0 0
\(385\) −1.10102 −0.0561132
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.18977i 0.313834i 0.987612 + 0.156917i \(0.0501555\pi\)
−0.987612 + 0.156917i \(0.949845\pi\)
\(390\) 0 0
\(391\) 28.0130 1.41668
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 13.1010i − 0.659184i
\(396\) 0 0
\(397\) − 18.6753i − 0.937287i −0.883387 0.468644i \(-0.844743\pi\)
0.883387 0.468644i \(-0.155257\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.20204 −0.109965 −0.0549823 0.998487i \(-0.517510\pi\)
−0.0549823 + 0.998487i \(0.517510\pi\)
\(402\) 0 0
\(403\) − 7.59592i − 0.378380i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 11.4362 0.566874
\(408\) 0 0
\(409\) −29.5959 −1.46342 −0.731712 0.681614i \(-0.761278\pi\)
−0.731712 + 0.681614i \(0.761278\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 10.2810i − 0.505893i
\(414\) 0 0
\(415\) −1.15530 −0.0567112
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 19.8306i 0.966485i 0.875487 + 0.483242i \(0.160541\pi\)
−0.875487 + 0.483242i \(0.839459\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 19.1010 0.926536
\(426\) 0 0
\(427\) 6.00000i 0.290360i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.15530 0.0556486 0.0278243 0.999613i \(-0.491142\pi\)
0.0278243 + 0.999613i \(0.491142\pi\)
\(432\) 0 0
\(433\) −21.5959 −1.03783 −0.518917 0.854825i \(-0.673665\pi\)
−0.518917 + 0.854825i \(0.673665\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 16.5767i − 0.792972i
\(438\) 0 0
\(439\) −26.9637 −1.28691 −0.643453 0.765486i \(-0.722499\pi\)
−0.643453 + 0.765486i \(0.722499\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 9.79796i − 0.465515i −0.972535 0.232758i \(-0.925225\pi\)
0.972535 0.232758i \(-0.0747749\pi\)
\(444\) 0 0
\(445\) − 12.5915i − 0.596896i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) − 1.10102i − 0.0518450i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.98518 −0.186828
\(456\) 0 0
\(457\) 14.0000 0.654892 0.327446 0.944870i \(-0.393812\pi\)
0.327446 + 0.944870i \(0.393812\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 23.8158i − 1.10921i −0.832113 0.554606i \(-0.812869\pi\)
0.832113 0.554606i \(-0.187131\pi\)
\(462\) 0 0
\(463\) 8.39436 0.390119 0.195060 0.980791i \(-0.437510\pi\)
0.195060 + 0.980791i \(0.437510\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 31.5959i − 1.46208i −0.682332 0.731042i \(-0.739034\pi\)
0.682332 0.731042i \(-0.260966\pi\)
\(468\) 0 0
\(469\) 8.18236i 0.377826i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.89898 0.133295
\(474\) 0 0
\(475\) − 11.3031i − 0.518620i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −42.7031 −1.95115 −0.975577 0.219656i \(-0.929506\pi\)
−0.975577 + 0.219656i \(0.929506\pi\)
\(480\) 0 0
\(481\) 41.3939 1.88740
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 11.2242i 0.509667i
\(486\) 0 0
\(487\) 24.9711 1.13155 0.565774 0.824560i \(-0.308577\pi\)
0.565774 + 0.824560i \(0.308577\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 17.3939i 0.784975i 0.919757 + 0.392487i \(0.128385\pi\)
−0.919757 + 0.392487i \(0.871615\pi\)
\(492\) 0 0
\(493\) 35.4640i 1.59722i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −15.7980 −0.708635
\(498\) 0 0
\(499\) − 8.00000i − 0.358129i −0.983837 0.179065i \(-0.942693\pi\)
0.983837 0.179065i \(-0.0573071\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −41.5478 −1.85253 −0.926263 0.376879i \(-0.876997\pi\)
−0.926263 + 0.376879i \(0.876997\pi\)
\(504\) 0 0
\(505\) −9.79796 −0.436003
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 18.7813i − 0.832467i −0.909258 0.416234i \(-0.863350\pi\)
0.909258 0.416234i \(-0.136650\pi\)
\(510\) 0 0
\(511\) 2.09859 0.0928362
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 15.1918i 0.669432i
\(516\) 0 0
\(517\) − 5.71812i − 0.251483i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 33.7980 1.48072 0.740358 0.672213i \(-0.234656\pi\)
0.740358 + 0.672213i \(0.234656\pi\)
\(522\) 0 0
\(523\) − 4.69694i − 0.205383i −0.994713 0.102691i \(-0.967255\pi\)
0.994713 0.102691i \(-0.0327454\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10.2810 0.447845
\(528\) 0 0
\(529\) 9.69694 0.421606
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 3.98518i − 0.172617i
\(534\) 0 0
\(535\) −12.5915 −0.544380
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.89898i 0.254087i
\(540\) 0 0
\(541\) 19.2530i 0.827749i 0.910334 + 0.413875i \(0.135825\pi\)
−0.910334 + 0.413875i \(0.864175\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −8.20204 −0.351337
\(546\) 0 0
\(547\) 18.8990i 0.808062i 0.914745 + 0.404031i \(0.132391\pi\)
−0.914745 + 0.404031i \(0.867609\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 20.9859 0.894030
\(552\) 0 0
\(553\) 13.1010 0.557112
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 32.2102i − 1.36479i −0.730985 0.682394i \(-0.760939\pi\)
0.730985 0.682394i \(-0.239061\pi\)
\(558\) 0 0
\(559\) 10.4930 0.443805
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 21.7980i 0.918674i 0.888262 + 0.459337i \(0.151913\pi\)
−0.888262 + 0.459337i \(0.848087\pi\)
\(564\) 0 0
\(565\) − 10.2810i − 0.432523i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 14.6969 0.616128 0.308064 0.951366i \(-0.400319\pi\)
0.308064 + 0.951366i \(0.400319\pi\)
\(570\) 0 0
\(571\) − 42.0908i − 1.76145i −0.473632 0.880723i \(-0.657057\pi\)
0.473632 0.880723i \(-0.342943\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 22.2948 0.929759
\(576\) 0 0
\(577\) −27.1010 −1.12823 −0.564115 0.825696i \(-0.690783\pi\)
−0.564115 + 0.825696i \(0.690783\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 1.15530i − 0.0479297i
\(582\) 0 0
\(583\) −8.28836 −0.343269
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 9.79796i − 0.404405i −0.979344 0.202203i \(-0.935190\pi\)
0.979344 0.202203i \(-0.0648099\pi\)
\(588\) 0 0
\(589\) − 6.08377i − 0.250677i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 4.89898 0.201177 0.100588 0.994928i \(-0.467927\pi\)
0.100588 + 0.994928i \(0.467927\pi\)
\(594\) 0 0
\(595\) − 5.39388i − 0.221127i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 22.2948 0.910943 0.455471 0.890250i \(-0.349471\pi\)
0.455471 + 0.890250i \(0.349471\pi\)
\(600\) 0 0
\(601\) 31.3939 1.28058 0.640291 0.768132i \(-0.278814\pi\)
0.640291 + 0.768132i \(0.278814\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.04930i 0.0426599i
\(606\) 0 0
\(607\) 5.24648 0.212948 0.106474 0.994315i \(-0.466044\pi\)
0.106474 + 0.994315i \(0.466044\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 20.6969i − 0.837309i
\(612\) 0 0
\(613\) 12.9572i 0.523336i 0.965158 + 0.261668i \(0.0842725\pi\)
−0.965158 + 0.261668i \(0.915727\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2.20204 0.0886508 0.0443254 0.999017i \(-0.485886\pi\)
0.0443254 + 0.999017i \(0.485886\pi\)
\(618\) 0 0
\(619\) 14.0000i 0.562708i 0.959604 + 0.281354i \(0.0907834\pi\)
−0.959604 + 0.281354i \(0.909217\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.5915 0.504470
\(624\) 0 0
\(625\) 9.69694 0.387878
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 56.0259i 2.23390i
\(630\) 0 0
\(631\) −12.3795 −0.492822 −0.246411 0.969165i \(-0.579251\pi\)
−0.246411 + 0.969165i \(0.579251\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 10.8990i 0.432513i
\(636\) 0 0
\(637\) 21.3516i 0.845979i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −43.5959 −1.72194 −0.860968 0.508660i \(-0.830141\pi\)
−0.860968 + 0.508660i \(0.830141\pi\)
\(642\) 0 0
\(643\) − 34.0000i − 1.34083i −0.741987 0.670415i \(-0.766116\pi\)
0.741987 0.670415i \(-0.233884\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −4.77483 −0.187718 −0.0938589 0.995586i \(-0.529920\pi\)
−0.0938589 + 0.995586i \(0.529920\pi\)
\(648\) 0 0
\(649\) −9.79796 −0.384604
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 32.1042i 1.25633i 0.778079 + 0.628166i \(0.216194\pi\)
−0.778079 + 0.628166i \(0.783806\pi\)
\(654\) 0 0
\(655\) −21.7172 −0.848561
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 31.5959i 1.23080i 0.788214 + 0.615401i \(0.211006\pi\)
−0.788214 + 0.615401i \(0.788994\pi\)
\(660\) 0 0
\(661\) 19.8306i 0.771321i 0.922641 + 0.385661i \(0.126026\pi\)
−0.922641 + 0.385661i \(0.873974\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.19184 −0.123774
\(666\) 0 0
\(667\) 41.3939i 1.60278i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.71812 0.220746
\(672\) 0 0
\(673\) −43.3939 −1.67271 −0.836356 0.548187i \(-0.815318\pi\)
−0.836356 + 0.548187i \(0.815318\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 0.943295i − 0.0362538i −0.999836 0.0181269i \(-0.994230\pi\)
0.999836 0.0181269i \(-0.00577028\pi\)
\(678\) 0 0
\(679\) −11.2242 −0.430747
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 39.1918i − 1.49963i −0.661645 0.749817i \(-0.730142\pi\)
0.661645 0.749817i \(-0.269858\pi\)
\(684\) 0 0
\(685\) − 22.8725i − 0.873913i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −30.0000 −1.14291
\(690\) 0 0
\(691\) − 2.40408i − 0.0914556i −0.998954 0.0457278i \(-0.985439\pi\)
0.998954 0.0457278i \(-0.0145607\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.23907 0.274593
\(696\) 0 0
\(697\) 5.39388 0.204308
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 9.33766i 0.352678i 0.984329 + 0.176339i \(0.0564256\pi\)
−0.984329 + 0.176339i \(0.943574\pi\)
\(702\) 0 0
\(703\) 33.1534 1.25041
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 9.79796i − 0.368490i
\(708\) 0 0
\(709\) − 3.04189i − 0.114240i −0.998367 0.0571202i \(-0.981808\pi\)
0.998367 0.0571202i \(-0.0181918\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 12.0000 0.449404
\(714\) 0 0
\(715\) 3.79796i 0.142036i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 2.46424 0.0919006 0.0459503 0.998944i \(-0.485368\pi\)
0.0459503 + 0.998944i \(0.485368\pi\)
\(720\) 0 0
\(721\) −15.1918 −0.565774
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 28.2250i 1.04825i
\(726\) 0 0
\(727\) 6.29577 0.233497 0.116749 0.993161i \(-0.462753\pi\)
0.116749 + 0.993161i \(0.462753\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 14.2020i 0.525281i
\(732\) 0 0
\(733\) − 22.2948i − 0.823479i −0.911302 0.411739i \(-0.864921\pi\)
0.911302 0.411739i \(-0.135079\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.79796 0.287242
\(738\) 0 0
\(739\) − 11.3031i − 0.415790i −0.978151 0.207895i \(-0.933339\pi\)
0.978151 0.207895i \(-0.0666612\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21.7172 0.796727 0.398363 0.917228i \(-0.369578\pi\)
0.398363 + 0.917228i \(0.369578\pi\)
\(744\) 0 0
\(745\) 16.4041 0.600999
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 12.5915i − 0.460085i
\(750\) 0 0
\(751\) −12.3795 −0.451736 −0.225868 0.974158i \(-0.572522\pi\)
−0.225868 + 0.974158i \(0.572522\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 18.4949i − 0.673098i
\(756\) 0 0
\(757\) − 30.1116i − 1.09442i −0.836994 0.547212i \(-0.815689\pi\)
0.836994 0.547212i \(-0.184311\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −4.89898 −0.177588 −0.0887939 0.996050i \(-0.528301\pi\)
−0.0887939 + 0.996050i \(0.528301\pi\)
\(762\) 0 0
\(763\) − 8.20204i − 0.296934i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −35.4640 −1.28053
\(768\) 0 0
\(769\) −10.0000 −0.360609 −0.180305 0.983611i \(-0.557708\pi\)
−0.180305 + 0.983611i \(0.557708\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 38.3999i − 1.38115i −0.723261 0.690575i \(-0.757358\pi\)
0.723261 0.690575i \(-0.242642\pi\)
\(774\) 0 0
\(775\) 8.18236 0.293919
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 3.19184i − 0.114359i
\(780\) 0 0
\(781\) 15.0558i 0.538738i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 3.19184 0.113922
\(786\) 0 0
\(787\) 28.6969i 1.02294i 0.859303 + 0.511468i \(0.170898\pi\)
−0.859303 + 0.511468i \(0.829102\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 10.2810 0.365549
\(792\) 0 0
\(793\) 20.6969 0.734970
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 39.5552i 1.40112i 0.713595 + 0.700559i \(0.247066\pi\)
−0.713595 + 0.700559i \(0.752934\pi\)
\(798\) 0 0
\(799\) 28.0130 0.991028
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 2.00000i − 0.0705785i
\(804\) 0 0
\(805\) − 6.29577i − 0.221897i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.10102 0.0387098 0.0193549 0.999813i \(-0.493839\pi\)
0.0193549 + 0.999813i \(0.493839\pi\)
\(810\) 0 0
\(811\) 48.6969i 1.70998i 0.518644 + 0.854990i \(0.326437\pi\)
−0.518644 + 0.854990i \(0.673563\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −4.19718 −0.147021
\(816\) 0 0
\(817\) 8.40408 0.294022
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0.943295i 0.0329212i 0.999865 + 0.0164606i \(0.00523981\pi\)
−0.999865 + 0.0164606i \(0.994760\pi\)
\(822\) 0 0
\(823\) 33.1534 1.15566 0.577828 0.816158i \(-0.303900\pi\)
0.577828 + 0.816158i \(0.303900\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 3.30306i − 0.114859i −0.998350 0.0574294i \(-0.981710\pi\)
0.998350 0.0574294i \(-0.0182904\pi\)
\(828\) 0 0
\(829\) 12.5915i 0.437322i 0.975801 + 0.218661i \(0.0701689\pi\)
−0.975801 + 0.218661i \(0.929831\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −28.8990 −1.00129
\(834\) 0 0
\(835\) 4.40408i 0.152410i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −20.1963 −0.697252 −0.348626 0.937262i \(-0.613352\pi\)
−0.348626 + 0.937262i \(0.613352\pi\)
\(840\) 0 0
\(841\) −23.4041 −0.807037
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.106000i 0.00364652i
\(846\) 0 0
\(847\) −1.04930 −0.0360542
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 65.3939i 2.24167i
\(852\) 0 0
\(853\) 19.0410i 0.651950i 0.945378 + 0.325975i \(0.105693\pi\)
−0.945378 + 0.325975i \(0.894307\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 40.2929 1.37638 0.688189 0.725532i \(-0.258406\pi\)
0.688189 + 0.725532i \(0.258406\pi\)
\(858\) 0 0
\(859\) − 5.79796i − 0.197824i −0.995096 0.0989119i \(-0.968464\pi\)
0.995096 0.0989119i \(-0.0315362\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −2.67624 −0.0911002 −0.0455501 0.998962i \(-0.514504\pi\)
−0.0455501 + 0.998962i \(0.514504\pi\)
\(864\) 0 0
\(865\) 16.4041 0.557756
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 12.4855i − 0.423543i
\(870\) 0 0
\(871\) 28.2250 0.956367
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 9.79796i − 0.331231i
\(876\) 0 0
\(877\) 50.3078i 1.69877i 0.527770 + 0.849387i \(0.323028\pi\)
−0.527770 + 0.849387i \(0.676972\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −48.9898 −1.65051 −0.825254 0.564762i \(-0.808968\pi\)
−0.825254 + 0.564762i \(0.808968\pi\)
\(882\) 0 0
\(883\) 43.3939i 1.46032i 0.683276 + 0.730160i \(0.260555\pi\)
−0.683276 + 0.730160i \(0.739445\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −48.7869 −1.63810 −0.819051 0.573720i \(-0.805500\pi\)
−0.819051 + 0.573720i \(0.805500\pi\)
\(888\) 0 0
\(889\) −10.8990 −0.365540
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 16.5767i − 0.554719i
\(894\) 0 0
\(895\) −2.31059 −0.0772345
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 15.1918i 0.506676i
\(900\) 0 0
\(901\) − 40.6045i − 1.35273i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −4.40408 −0.146397
\(906\) 0 0
\(907\) − 53.1918i − 1.76621i −0.469179 0.883103i \(-0.655450\pi\)
0.469179 0.883103i \(-0.344550\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −5.71812 −0.189450 −0.0947249 0.995503i \(-0.530197\pi\)
−0.0947249 + 0.995503i \(0.530197\pi\)
\(912\) 0 0
\(913\) −1.10102 −0.0364385
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 21.7172i − 0.717165i
\(918\) 0 0
\(919\) −11.5422 −0.380744 −0.190372 0.981712i \(-0.560969\pi\)
−0.190372 + 0.981712i \(0.560969\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 54.4949i 1.79372i
\(924\) 0 0
\(925\) 44.5897i 1.46610i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −45.7980 −1.50258 −0.751291 0.659971i \(-0.770569\pi\)
−0.751291 + 0.659971i \(0.770569\pi\)
\(930\) 0 0
\(931\) 17.1010i 0.560463i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5.14048 −0.168112
\(936\) 0 0
\(937\) −26.0000 −0.849383 −0.424691 0.905338i \(-0.639617\pi\)
−0.424691 + 0.905338i \(0.639617\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 40.6045i 1.32367i 0.749650 + 0.661835i \(0.230222\pi\)
−0.749650 + 0.661835i \(0.769778\pi\)
\(942\) 0 0
\(943\) 6.29577 0.205019
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 41.3939i 1.34512i 0.740042 + 0.672560i \(0.234805\pi\)
−0.740042 + 0.672560i \(0.765195\pi\)
\(948\) 0 0
\(949\) − 7.23907i − 0.234990i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 20.6969 0.670440 0.335220 0.942140i \(-0.391189\pi\)
0.335220 + 0.942140i \(0.391189\pi\)
\(954\) 0 0
\(955\) − 1.59592i − 0.0516427i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 22.8725 0.738591
\(960\) 0 0
\(961\) −26.5959 −0.857933
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 12.3795i − 0.398512i
\(966\) 0 0
\(967\) −18.5693 −0.597149 −0.298574 0.954386i \(-0.596511\pi\)
−0.298574 + 0.954386i \(0.596511\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 7.59592i 0.243765i 0.992545 + 0.121882i \(0.0388930\pi\)
−0.992545 + 0.121882i \(0.961107\pi\)
\(972\) 0 0
\(973\) 7.23907i 0.232074i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −45.7980 −1.46521 −0.732603 0.680656i \(-0.761695\pi\)
−0.732603 + 0.680656i \(0.761695\pi\)
\(978\) 0 0
\(979\) − 12.0000i − 0.383522i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 20.4083 0.650922 0.325461 0.945555i \(-0.394480\pi\)
0.325461 + 0.945555i \(0.394480\pi\)
\(984\) 0 0
\(985\) 14.2020 0.452515
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 16.5767i 0.527109i
\(990\) 0 0
\(991\) −58.1245 −1.84639 −0.923193 0.384336i \(-0.874430\pi\)
−0.923193 + 0.384336i \(0.874430\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 17.3939i − 0.551423i
\(996\) 0 0
\(997\) − 54.5050i − 1.72619i −0.505041 0.863095i \(-0.668523\pi\)
0.505041 0.863095i \(-0.331477\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6336.2.f.j.3169.4 yes 8
3.2 odd 2 6336.2.f.i.3169.6 yes 8
4.3 odd 2 inner 6336.2.f.j.3169.3 yes 8
8.3 odd 2 inner 6336.2.f.j.3169.5 yes 8
8.5 even 2 inner 6336.2.f.j.3169.6 yes 8
12.11 even 2 6336.2.f.i.3169.5 yes 8
24.5 odd 2 6336.2.f.i.3169.4 yes 8
24.11 even 2 6336.2.f.i.3169.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6336.2.f.i.3169.3 8 24.11 even 2
6336.2.f.i.3169.4 yes 8 24.5 odd 2
6336.2.f.i.3169.5 yes 8 12.11 even 2
6336.2.f.i.3169.6 yes 8 3.2 odd 2
6336.2.f.j.3169.3 yes 8 4.3 odd 2 inner
6336.2.f.j.3169.4 yes 8 1.1 even 1 trivial
6336.2.f.j.3169.5 yes 8 8.3 odd 2 inner
6336.2.f.j.3169.6 yes 8 8.5 even 2 inner