Properties

Label 16-6336e8-1.1-c1e8-0-5
Degree $16$
Conductor $2.597\times 10^{30}$
Sign $1$
Analytic cond. $4.29277\times 10^{13}$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·11-s + 8·13-s − 16·23-s + 12·25-s − 8·37-s + 16·47-s + 28·49-s − 16·59-s − 24·61-s − 16·71-s − 40·83-s − 24·97-s − 48·107-s + 40·109-s + 36·121-s + 127-s + 131-s + 137-s + 139-s − 64·143-s + 149-s + 151-s + 157-s + 163-s + 167-s + 20·169-s + 173-s + ⋯
L(s)  = 1  − 2.41·11-s + 2.21·13-s − 3.33·23-s + 12/5·25-s − 1.31·37-s + 2.33·47-s + 4·49-s − 2.08·59-s − 3.07·61-s − 1.89·71-s − 4.39·83-s − 2.43·97-s − 4.64·107-s + 3.83·109-s + 3.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 5.35·143-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.53·169-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 3^{16} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 3^{16} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{48} \cdot 3^{16} \cdot 11^{8}\)
Sign: $1$
Analytic conductor: \(4.29277\times 10^{13}\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{48} \cdot 3^{16} \cdot 11^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.5452526340\)
\(L(\frac12)\) \(\approx\) \(0.5452526340\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( ( 1 + T )^{8} \)
good5 \( 1 - 12 T^{2} + 16 p T^{4} - 372 T^{6} + 1614 T^{8} - 372 p^{2} T^{10} + 16 p^{5} T^{12} - 12 p^{6} T^{14} + p^{8} T^{16} \)
7 \( 1 - 4 p T^{2} + 416 T^{4} - 4260 T^{6} + 33422 T^{8} - 4260 p^{2} T^{10} + 416 p^{4} T^{12} - 4 p^{7} T^{14} + p^{8} T^{16} \)
13 \( ( 1 - 4 T + 14 T^{2} + 36 T^{3} - 154 T^{4} + 36 p T^{5} + 14 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
17 \( 1 - 48 T^{2} + 1724 T^{4} - 42960 T^{6} + 826374 T^{8} - 42960 p^{2} T^{10} + 1724 p^{4} T^{12} - 48 p^{6} T^{14} + p^{8} T^{16} \)
19 \( 1 - 40 T^{2} + 1652 T^{4} - 39864 T^{6} + 928262 T^{8} - 39864 p^{2} T^{10} + 1652 p^{4} T^{12} - 40 p^{6} T^{14} + p^{8} T^{16} \)
23 \( ( 1 + 8 T + 66 T^{2} + 336 T^{3} + 2086 T^{4} + 336 p T^{5} + 66 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
29 \( ( 1 - 46 T^{2} + p^{2} T^{4} )^{4} \)
31 \( 1 - 160 T^{2} + 11420 T^{4} - 506208 T^{6} + 17124038 T^{8} - 506208 p^{2} T^{10} + 11420 p^{4} T^{12} - 160 p^{6} T^{14} + p^{8} T^{16} \)
37 \( ( 1 + 4 T + 56 T^{2} + 204 T^{3} + 2606 T^{4} + 204 p T^{5} + 56 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
41 \( 1 - 240 T^{2} + 26300 T^{4} - 1782288 T^{6} + 85159878 T^{8} - 1782288 p^{2} T^{10} + 26300 p^{4} T^{12} - 240 p^{6} T^{14} + p^{8} T^{16} \)
43 \( 1 - 104 T^{2} + 7924 T^{4} - 453368 T^{6} + 22010950 T^{8} - 453368 p^{2} T^{10} + 7924 p^{4} T^{12} - 104 p^{6} T^{14} + p^{8} T^{16} \)
47 \( ( 1 - 8 T + 42 T^{2} - 576 T^{3} + 5398 T^{4} - 576 p T^{5} + 42 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
53 \( 1 - 204 T^{2} + 23504 T^{4} - 1838388 T^{6} + 110812110 T^{8} - 1838388 p^{2} T^{10} + 23504 p^{4} T^{12} - 204 p^{6} T^{14} + p^{8} T^{16} \)
59 \( ( 1 + 8 T + 108 T^{2} + 72 T^{3} + 2902 T^{4} + 72 p T^{5} + 108 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
61 \( ( 1 + 12 T + 254 T^{2} + 2148 T^{3} + 23526 T^{4} + 2148 p T^{5} + 254 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
67 \( ( 1 - 100 T^{2} + 8022 T^{4} - 100 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
71 \( ( 1 + 8 T + 258 T^{2} + 1488 T^{3} + 26662 T^{4} + 1488 p T^{5} + 258 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
73 \( ( 1 + 140 T^{2} + 768 T^{3} + 9030 T^{4} + 768 p T^{5} + 140 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
79 \( 1 - 284 T^{2} + 48928 T^{4} - 5986532 T^{6} + 538243534 T^{8} - 5986532 p^{2} T^{10} + 48928 p^{4} T^{12} - 284 p^{6} T^{14} + p^{8} T^{16} \)
83 \( ( 1 + 20 T + 408 T^{2} + 4548 T^{3} + 51790 T^{4} + 4548 p T^{5} + 408 p^{2} T^{6} + 20 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
89 \( 1 - 384 T^{2} + 62276 T^{4} - 5930112 T^{6} + 485181510 T^{8} - 5930112 p^{2} T^{10} + 62276 p^{4} T^{12} - 384 p^{6} T^{14} + p^{8} T^{16} \)
97 \( ( 1 + 12 T + 368 T^{2} + 3348 T^{3} + 52590 T^{4} + 3348 p T^{5} + 368 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.22282801973179098809154704341, −3.21524671905869708526305252584, −3.13515703081553128612107266699, −2.85371652545416430367137602700, −2.82504430635892532345760856839, −2.65548513635360798990671221890, −2.52996848395157290186287066793, −2.49979906744845346974414920830, −2.42106381041273349649894827463, −2.32057213144543495859008417425, −2.31334852756395444334033555380, −2.09137357730958457694756344087, −1.85152657575583125460489829578, −1.78013444295267080015824133910, −1.64031423101613465947460964707, −1.33155501408806491177745013529, −1.26555371426256496280052790240, −1.24936224975708118976864502320, −1.24529126157551205422506493294, −1.19348215703185220075097338987, −0.906156402308672677957067336300, −0.54892777264219879048241012817, −0.36790005453553610133000121405, −0.16050086849111368471801860438, −0.12043826310338174959409709892, 0.12043826310338174959409709892, 0.16050086849111368471801860438, 0.36790005453553610133000121405, 0.54892777264219879048241012817, 0.906156402308672677957067336300, 1.19348215703185220075097338987, 1.24529126157551205422506493294, 1.24936224975708118976864502320, 1.26555371426256496280052790240, 1.33155501408806491177745013529, 1.64031423101613465947460964707, 1.78013444295267080015824133910, 1.85152657575583125460489829578, 2.09137357730958457694756344087, 2.31334852756395444334033555380, 2.32057213144543495859008417425, 2.42106381041273349649894827463, 2.49979906744845346974414920830, 2.52996848395157290186287066793, 2.65548513635360798990671221890, 2.82504430635892532345760856839, 2.85371652545416430367137602700, 3.13515703081553128612107266699, 3.21524671905869708526305252584, 3.22282801973179098809154704341

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.