Properties

Label 6336.2.d.c.3455.1
Level $6336$
Weight $2$
Character 6336.3455
Analytic conductor $50.593$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6336,2,Mod(3455,6336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6336.3455"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6336 = 2^{6} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6336.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,-8,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.5932147207\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.1768034304.5
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 9x^{6} - 2x^{5} + 34x^{4} - 18x^{3} + 51x^{2} + 18x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 1584)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3455.1
Root \(-0.943680 - 1.63450i\) of defining polynomial
Character \(\chi\) \(=\) 6336.3455
Dual form 6336.2.d.c.3455.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.08334i q^{5} -4.08334i q^{7} -1.00000 q^{11} +5.74733 q^{13} -1.62868i q^{17} +6.07806i q^{19} -6.92637 q^{23} -11.6737 q^{25} +3.46410i q^{29} +1.83542i q^{31} -16.6737 q^{35} -5.47142 q^{37} -1.83542i q^{41} -5.75947i q^{43} -7.21875 q^{47} -9.67370 q^{49} +11.0115i q^{53} +4.08334i q^{55} -6.65046 q^{59} +1.74733 q^{61} -23.4683i q^{65} +11.9494i q^{67} -6.92637 q^{71} +4.65046 q^{73} +4.08334i q^{77} -0.825984i q^{79} +4.67370 q^{83} -6.65046 q^{85} -3.00416i q^{89} -23.4683i q^{91} +24.8188 q^{95} -12.6737 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{11} + 8 q^{13} - 16 q^{23} - 16 q^{25} - 56 q^{35} - 8 q^{37} + 16 q^{47} - 16 q^{59} - 24 q^{61} - 16 q^{71} - 40 q^{83} - 16 q^{85} + 8 q^{95} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6336\mathbb{Z}\right)^\times\).

\(n\) \(1729\) \(3521\) \(4159\) \(4357\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 4.08334i − 1.82613i −0.407817 0.913064i \(-0.633710\pi\)
0.407817 0.913064i \(-0.366290\pi\)
\(6\) 0 0
\(7\) − 4.08334i − 1.54336i −0.636012 0.771680i \(-0.719417\pi\)
0.636012 0.771680i \(-0.280583\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 5.74733 1.59402 0.797011 0.603965i \(-0.206413\pi\)
0.797011 + 0.603965i \(0.206413\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 1.62868i − 0.395013i −0.980302 0.197506i \(-0.936716\pi\)
0.980302 0.197506i \(-0.0632844\pi\)
\(18\) 0 0
\(19\) 6.07806i 1.39440i 0.716875 + 0.697202i \(0.245572\pi\)
−0.716875 + 0.697202i \(0.754428\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.92637 −1.44425 −0.722124 0.691763i \(-0.756834\pi\)
−0.722124 + 0.691763i \(0.756834\pi\)
\(24\) 0 0
\(25\) −11.6737 −2.33474
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.46410i 0.643268i 0.946864 + 0.321634i \(0.104232\pi\)
−0.946864 + 0.321634i \(0.895768\pi\)
\(30\) 0 0
\(31\) 1.83542i 0.329651i 0.986323 + 0.164826i \(0.0527062\pi\)
−0.986323 + 0.164826i \(0.947294\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −16.6737 −2.81837
\(36\) 0 0
\(37\) −5.47142 −0.899496 −0.449748 0.893156i \(-0.648486\pi\)
−0.449748 + 0.893156i \(0.648486\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 1.83542i − 0.286645i −0.989676 0.143322i \(-0.954221\pi\)
0.989676 0.143322i \(-0.0457786\pi\)
\(42\) 0 0
\(43\) − 5.75947i − 0.878311i −0.898411 0.439155i \(-0.855278\pi\)
0.898411 0.439155i \(-0.144722\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −7.21875 −1.05296 −0.526481 0.850187i \(-0.676489\pi\)
−0.526481 + 0.850187i \(0.676489\pi\)
\(48\) 0 0
\(49\) −9.67370 −1.38196
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.0115i 1.51255i 0.654252 + 0.756276i \(0.272983\pi\)
−0.654252 + 0.756276i \(0.727017\pi\)
\(54\) 0 0
\(55\) 4.08334i 0.550598i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.65046 −0.865816 −0.432908 0.901438i \(-0.642513\pi\)
−0.432908 + 0.901438i \(0.642513\pi\)
\(60\) 0 0
\(61\) 1.74733 0.223723 0.111861 0.993724i \(-0.464319\pi\)
0.111861 + 0.993724i \(0.464319\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 23.4683i − 2.91089i
\(66\) 0 0
\(67\) 11.9494i 1.45985i 0.683528 + 0.729925i \(0.260445\pi\)
−0.683528 + 0.729925i \(0.739555\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.92637 −0.822009 −0.411005 0.911633i \(-0.634822\pi\)
−0.411005 + 0.911633i \(0.634822\pi\)
\(72\) 0 0
\(73\) 4.65046 0.544295 0.272148 0.962255i \(-0.412266\pi\)
0.272148 + 0.962255i \(0.412266\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.08334i 0.465340i
\(78\) 0 0
\(79\) − 0.825984i − 0.0929304i −0.998920 0.0464652i \(-0.985204\pi\)
0.998920 0.0464652i \(-0.0147957\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.67370 0.513005 0.256503 0.966544i \(-0.417430\pi\)
0.256503 + 0.966544i \(0.417430\pi\)
\(84\) 0 0
\(85\) −6.65046 −0.721344
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 3.00416i − 0.318440i −0.987243 0.159220i \(-0.949102\pi\)
0.987243 0.159220i \(-0.0508979\pi\)
\(90\) 0 0
\(91\) − 23.4683i − 2.46015i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 24.8188 2.54636
\(96\) 0 0
\(97\) −12.6737 −1.28682 −0.643410 0.765522i \(-0.722481\pi\)
−0.643410 + 0.765522i \(0.722481\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 18.4874i − 1.83956i −0.392429 0.919782i \(-0.628365\pi\)
0.392429 0.919782i \(-0.371635\pi\)
\(102\) 0 0
\(103\) − 16.9303i − 1.66819i −0.551618 0.834097i \(-0.685989\pi\)
0.551618 0.834097i \(-0.314011\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −20.1451 −1.94750 −0.973751 0.227615i \(-0.926907\pi\)
−0.973751 + 0.227615i \(0.926907\pi\)
\(108\) 0 0
\(109\) 5.45495 0.522490 0.261245 0.965273i \(-0.415867\pi\)
0.261245 + 0.965273i \(0.415867\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.91348i 0.744438i 0.928145 + 0.372219i \(0.121403\pi\)
−0.928145 + 0.372219i \(0.878597\pi\)
\(114\) 0 0
\(115\) 28.2828i 2.63738i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.65046 −0.609647
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 27.2510i 2.43740i
\(126\) 0 0
\(127\) − 11.0115i − 0.977117i −0.872531 0.488558i \(-0.837523\pi\)
0.872531 0.488558i \(-0.162477\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.47142 0.303299 0.151650 0.988434i \(-0.451541\pi\)
0.151650 + 0.988434i \(0.451541\pi\)
\(132\) 0 0
\(133\) 24.8188 2.15206
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.666687i 0.0569589i 0.999594 + 0.0284795i \(0.00906652\pi\)
−0.999594 + 0.0284795i \(0.990933\pi\)
\(138\) 0 0
\(139\) 19.1541i 1.62463i 0.583221 + 0.812314i \(0.301792\pi\)
−0.583221 + 0.812314i \(0.698208\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.74733 −0.480616
\(144\) 0 0
\(145\) 14.1451 1.17469
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 12.9409i − 1.06016i −0.847948 0.530079i \(-0.822162\pi\)
0.847948 0.530079i \(-0.177838\pi\)
\(150\) 0 0
\(151\) − 3.76475i − 0.306371i −0.988197 0.153186i \(-0.951047\pi\)
0.988197 0.153186i \(-0.0489532\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 7.49466 0.601985
\(156\) 0 0
\(157\) 18.7956 1.50005 0.750025 0.661409i \(-0.230041\pi\)
0.750025 + 0.661409i \(0.230041\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 28.2828i 2.22899i
\(162\) 0 0
\(163\) − 14.7763i − 1.15737i −0.815551 0.578685i \(-0.803566\pi\)
0.815551 0.578685i \(-0.196434\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.97676 −0.617260 −0.308630 0.951182i \(-0.599871\pi\)
−0.308630 + 0.951182i \(0.599871\pi\)
\(168\) 0 0
\(169\) 20.0318 1.54091
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 0.206741i − 0.0157182i −0.999969 0.00785912i \(-0.997498\pi\)
0.999969 0.00785912i \(-0.00250166\pi\)
\(174\) 0 0
\(175\) 47.6677i 3.60334i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 8.50321 0.635559 0.317780 0.948165i \(-0.397063\pi\)
0.317780 + 0.948165i \(0.397063\pi\)
\(180\) 0 0
\(181\) −8.38132 −0.622979 −0.311489 0.950250i \(-0.600828\pi\)
−0.311489 + 0.950250i \(0.600828\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 22.3417i 1.64259i
\(186\) 0 0
\(187\) 1.62868i 0.119101i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −7.47819 −0.541103 −0.270551 0.962706i \(-0.587206\pi\)
−0.270551 + 0.962706i \(0.587206\pi\)
\(192\) 0 0
\(193\) −25.9979 −1.87137 −0.935684 0.352840i \(-0.885216\pi\)
−0.935684 + 0.352840i \(0.885216\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 2.15401i − 0.153467i −0.997052 0.0767336i \(-0.975551\pi\)
0.997052 0.0767336i \(-0.0244491\pi\)
\(198\) 0 0
\(199\) 9.01062i 0.638746i 0.947629 + 0.319373i \(0.103472\pi\)
−0.947629 + 0.319373i \(0.896528\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 14.1451 0.992793
\(204\) 0 0
\(205\) −7.49466 −0.523450
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 6.07806i − 0.420428i
\(210\) 0 0
\(211\) 11.8124i 0.813199i 0.913607 + 0.406599i \(0.133285\pi\)
−0.913607 + 0.406599i \(0.866715\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −23.5179 −1.60391
\(216\) 0 0
\(217\) 7.49466 0.508770
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 9.36056i − 0.629659i
\(222\) 0 0
\(223\) 16.5401i 1.10761i 0.832647 + 0.553804i \(0.186824\pi\)
−0.832647 + 0.553804i \(0.813176\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −6.84420 −0.454265 −0.227133 0.973864i \(-0.572935\pi\)
−0.227133 + 0.973864i \(0.572935\pi\)
\(228\) 0 0
\(229\) −5.49466 −0.363097 −0.181549 0.983382i \(-0.558111\pi\)
−0.181549 + 0.983382i \(0.558111\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 8.76362i − 0.574124i −0.957912 0.287062i \(-0.907321\pi\)
0.957912 0.287062i \(-0.0926786\pi\)
\(234\) 0 0
\(235\) 29.4766i 1.92284i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.32416 0.344391 0.172196 0.985063i \(-0.444914\pi\)
0.172196 + 0.985063i \(0.444914\pi\)
\(240\) 0 0
\(241\) −1.44818 −0.0932855 −0.0466428 0.998912i \(-0.514852\pi\)
−0.0466428 + 0.998912i \(0.514852\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 39.5010i 2.52363i
\(246\) 0 0
\(247\) 34.9326i 2.22271i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −21.0550 −1.32898 −0.664491 0.747297i \(-0.731351\pi\)
−0.664491 + 0.747297i \(0.731351\pi\)
\(252\) 0 0
\(253\) 6.92637 0.435457
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.12848i 0.0703929i 0.999380 + 0.0351965i \(0.0112057\pi\)
−0.999380 + 0.0351965i \(0.988794\pi\)
\(258\) 0 0
\(259\) 22.3417i 1.38824i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 17.8760 1.10228 0.551140 0.834413i \(-0.314193\pi\)
0.551140 + 0.834413i \(0.314193\pi\)
\(264\) 0 0
\(265\) 44.9639 2.76211
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 19.4968i − 1.18874i −0.804191 0.594371i \(-0.797401\pi\)
0.804191 0.594371i \(-0.202599\pi\)
\(270\) 0 0
\(271\) 15.8260i 0.961360i 0.876896 + 0.480680i \(0.159610\pi\)
−0.876896 + 0.480680i \(0.840390\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 11.6737 0.703951
\(276\) 0 0
\(277\) 10.2527 0.616023 0.308012 0.951383i \(-0.400336\pi\)
0.308012 + 0.951383i \(0.400336\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 23.1900i − 1.38340i −0.722186 0.691699i \(-0.756862\pi\)
0.722186 0.691699i \(-0.243138\pi\)
\(282\) 0 0
\(283\) 2.08863i 0.124156i 0.998071 + 0.0620780i \(0.0197727\pi\)
−0.998071 + 0.0620780i \(0.980227\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −7.49466 −0.442396
\(288\) 0 0
\(289\) 14.3474 0.843965
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.44523i 0.0844310i 0.999109 + 0.0422155i \(0.0134416\pi\)
−0.999109 + 0.0422155i \(0.986558\pi\)
\(294\) 0 0
\(295\) 27.1561i 1.58109i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −39.8081 −2.30216
\(300\) 0 0
\(301\) −23.5179 −1.35555
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 7.13494i − 0.408546i
\(306\) 0 0
\(307\) 0.388344i 0.0221640i 0.999939 + 0.0110820i \(0.00352758\pi\)
−0.999939 + 0.0110820i \(0.996472\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −30.9264 −1.75367 −0.876837 0.480788i \(-0.840351\pi\)
−0.876837 + 0.480788i \(0.840351\pi\)
\(312\) 0 0
\(313\) 1.64191 0.0928065 0.0464032 0.998923i \(-0.485224\pi\)
0.0464032 + 0.998923i \(0.485224\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 15.8260i − 0.888876i −0.895810 0.444438i \(-0.853403\pi\)
0.895810 0.444438i \(-0.146597\pi\)
\(318\) 0 0
\(319\) − 3.46410i − 0.193952i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 9.89922 0.550807
\(324\) 0 0
\(325\) −67.0926 −3.72163
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 29.4766i 1.62510i
\(330\) 0 0
\(331\) − 21.1478i − 1.16239i −0.813765 0.581195i \(-0.802586\pi\)
0.813765 0.581195i \(-0.197414\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 48.7934 2.66587
\(336\) 0 0
\(337\) 13.7055 0.746585 0.373293 0.927714i \(-0.378229\pi\)
0.373293 + 0.927714i \(0.378229\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 1.83542i − 0.0993936i
\(342\) 0 0
\(343\) 10.9176i 0.589497i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 31.0783 1.66837 0.834184 0.551486i \(-0.185939\pi\)
0.834184 + 0.551486i \(0.185939\pi\)
\(348\) 0 0
\(349\) −19.6001 −1.04917 −0.524584 0.851359i \(-0.675779\pi\)
−0.524584 + 0.851359i \(0.675779\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.92405i 0.208856i 0.994532 + 0.104428i \(0.0333012\pi\)
−0.994532 + 0.104428i \(0.966699\pi\)
\(354\) 0 0
\(355\) 28.2828i 1.50109i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 23.2001 1.22446 0.612228 0.790681i \(-0.290273\pi\)
0.612228 + 0.790681i \(0.290273\pi\)
\(360\) 0 0
\(361\) −17.9428 −0.944360
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 18.9894i − 0.993953i
\(366\) 0 0
\(367\) 6.57826i 0.343382i 0.985151 + 0.171691i \(0.0549231\pi\)
−0.985151 + 0.171691i \(0.945077\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 44.9639 2.33441
\(372\) 0 0
\(373\) −0.105415 −0.00545817 −0.00272908 0.999996i \(-0.500869\pi\)
−0.00272908 + 0.999996i \(0.500869\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 19.9093i 1.02538i
\(378\) 0 0
\(379\) − 8.48528i − 0.435860i −0.975964 0.217930i \(-0.930070\pi\)
0.975964 0.217930i \(-0.0699304\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.12010 0.0572347 0.0286173 0.999590i \(-0.490890\pi\)
0.0286173 + 0.999590i \(0.490890\pi\)
\(384\) 0 0
\(385\) 16.6737 0.849770
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 27.4398i − 1.39125i −0.718403 0.695627i \(-0.755127\pi\)
0.718403 0.695627i \(-0.244873\pi\)
\(390\) 0 0
\(391\) 11.2808i 0.570497i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3.37278 −0.169703
\(396\) 0 0
\(397\) 22.2670 1.11755 0.558774 0.829320i \(-0.311272\pi\)
0.558774 + 0.829320i \(0.311272\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 28.2809i − 1.41228i −0.708072 0.706141i \(-0.750435\pi\)
0.708072 0.706141i \(-0.249565\pi\)
\(402\) 0 0
\(403\) 10.5488i 0.525472i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.47142 0.271208
\(408\) 0 0
\(409\) −15.5933 −0.771039 −0.385520 0.922700i \(-0.625978\pi\)
−0.385520 + 0.922700i \(0.625978\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 27.1561i 1.33627i
\(414\) 0 0
\(415\) − 19.0843i − 0.936813i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −13.3009 −0.649793 −0.324896 0.945750i \(-0.605329\pi\)
−0.324896 + 0.945750i \(0.605329\pi\)
\(420\) 0 0
\(421\) −28.4607 −1.38709 −0.693546 0.720413i \(-0.743952\pi\)
−0.693546 + 0.720413i \(0.743952\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 19.0127i 0.922253i
\(426\) 0 0
\(427\) − 7.13494i − 0.345284i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4.57506 0.220373 0.110186 0.993911i \(-0.464855\pi\)
0.110186 + 0.993911i \(0.464855\pi\)
\(432\) 0 0
\(433\) −7.70549 −0.370302 −0.185151 0.982710i \(-0.559277\pi\)
−0.185151 + 0.982710i \(0.559277\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 42.0989i − 2.01386i
\(438\) 0 0
\(439\) − 20.0981i − 0.959231i −0.877479 0.479616i \(-0.840776\pi\)
0.877479 0.479616i \(-0.159224\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −8.21083 −0.390108 −0.195054 0.980792i \(-0.562488\pi\)
−0.195054 + 0.980792i \(0.562488\pi\)
\(444\) 0 0
\(445\) −12.2670 −0.581512
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 17.3670i − 0.819598i −0.912176 0.409799i \(-0.865599\pi\)
0.912176 0.409799i \(-0.134401\pi\)
\(450\) 0 0
\(451\) 1.83542i 0.0864266i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −95.8292 −4.49254
\(456\) 0 0
\(457\) 24.9893 1.16895 0.584475 0.811411i \(-0.301300\pi\)
0.584475 + 0.811411i \(0.301300\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 37.3693i − 1.74046i −0.492642 0.870232i \(-0.663969\pi\)
0.492642 0.870232i \(-0.336031\pi\)
\(462\) 0 0
\(463\) − 28.1665i − 1.30901i −0.756058 0.654505i \(-0.772877\pi\)
0.756058 0.654505i \(-0.227123\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15.9979 0.740293 0.370146 0.928973i \(-0.379308\pi\)
0.370146 + 0.928973i \(0.379308\pi\)
\(468\) 0 0
\(469\) 48.7934 2.25307
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5.75947i 0.264821i
\(474\) 0 0
\(475\) − 70.9535i − 3.25557i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −27.2234 −1.24387 −0.621934 0.783070i \(-0.713653\pi\)
−0.621934 + 0.783070i \(0.713653\pi\)
\(480\) 0 0
\(481\) −31.4460 −1.43382
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 51.7511i 2.34990i
\(486\) 0 0
\(487\) 22.4535i 1.01747i 0.860924 + 0.508734i \(0.169886\pi\)
−0.860924 + 0.508734i \(0.830114\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12.0986 0.546004 0.273002 0.962013i \(-0.411983\pi\)
0.273002 + 0.962013i \(0.411983\pi\)
\(492\) 0 0
\(493\) 5.64191 0.254099
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 28.2828i 1.26866i
\(498\) 0 0
\(499\) 13.4429i 0.601788i 0.953658 + 0.300894i \(0.0972850\pi\)
−0.953658 + 0.300894i \(0.902715\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −11.6822 −0.520886 −0.260443 0.965489i \(-0.583869\pi\)
−0.260443 + 0.965489i \(0.583869\pi\)
\(504\) 0 0
\(505\) −75.4904 −3.35928
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 33.0346i − 1.46423i −0.681178 0.732117i \(-0.738532\pi\)
0.681178 0.732117i \(-0.261468\pi\)
\(510\) 0 0
\(511\) − 18.9894i − 0.840043i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −69.1323 −3.04633
\(516\) 0 0
\(517\) 7.21875 0.317480
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 1.20898i − 0.0529665i −0.999649 0.0264833i \(-0.991569\pi\)
0.999649 0.0264833i \(-0.00843087\pi\)
\(522\) 0 0
\(523\) 7.77834i 0.340123i 0.985433 + 0.170062i \(0.0543967\pi\)
−0.985433 + 0.170062i \(0.945603\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.98931 0.130217
\(528\) 0 0
\(529\) 24.9746 1.08585
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 10.5488i − 0.456918i
\(534\) 0 0
\(535\) 82.2595i 3.55639i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 9.67370 0.416676
\(540\) 0 0
\(541\) −17.7452 −0.762925 −0.381463 0.924384i \(-0.624580\pi\)
−0.381463 + 0.924384i \(0.624580\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 22.2744i − 0.954133i
\(546\) 0 0
\(547\) − 16.8649i − 0.721092i −0.932741 0.360546i \(-0.882590\pi\)
0.932741 0.360546i \(-0.117410\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −21.0550 −0.896974
\(552\) 0 0
\(553\) −3.37278 −0.143425
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 45.0779i 1.91001i 0.296584 + 0.955007i \(0.404152\pi\)
−0.296584 + 0.955007i \(0.595848\pi\)
\(558\) 0 0
\(559\) − 33.1016i − 1.40005i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −7.46172 −0.314474 −0.157237 0.987561i \(-0.550259\pi\)
−0.157237 + 0.987561i \(0.550259\pi\)
\(564\) 0 0
\(565\) 32.3135 1.35944
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 17.3249i − 0.726296i −0.931731 0.363148i \(-0.881702\pi\)
0.931731 0.363148i \(-0.118298\pi\)
\(570\) 0 0
\(571\) 18.8355i 0.788241i 0.919059 + 0.394120i \(0.128951\pi\)
−0.919059 + 0.394120i \(0.871049\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 80.8564 3.37194
\(576\) 0 0
\(577\) 17.7309 0.738145 0.369073 0.929401i \(-0.379675\pi\)
0.369073 + 0.929401i \(0.379675\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 19.0843i − 0.791751i
\(582\) 0 0
\(583\) − 11.0115i − 0.456052i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 35.0358 1.44608 0.723041 0.690805i \(-0.242744\pi\)
0.723041 + 0.690805i \(0.242744\pi\)
\(588\) 0 0
\(589\) −11.1558 −0.459667
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 25.6669i 1.05402i 0.849861 + 0.527008i \(0.176686\pi\)
−0.849861 + 0.527008i \(0.823314\pi\)
\(594\) 0 0
\(595\) 27.1561i 1.11329i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −46.2081 −1.88801 −0.944005 0.329931i \(-0.892975\pi\)
−0.944005 + 0.329931i \(0.892975\pi\)
\(600\) 0 0
\(601\) −2.21297 −0.0902688 −0.0451344 0.998981i \(-0.514372\pi\)
−0.0451344 + 0.998981i \(0.514372\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 4.08334i − 0.166012i
\(606\) 0 0
\(607\) 0.0492955i 0.00200084i 0.999999 + 0.00100042i \(0.000318444\pi\)
−0.999999 + 0.00100042i \(0.999682\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −41.4885 −1.67845
\(612\) 0 0
\(613\) 18.5894 0.750818 0.375409 0.926859i \(-0.377502\pi\)
0.375409 + 0.926859i \(0.377502\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 14.6160i 0.588419i 0.955741 + 0.294209i \(0.0950563\pi\)
−0.955741 + 0.294209i \(0.904944\pi\)
\(618\) 0 0
\(619\) 30.8100i 1.23836i 0.785250 + 0.619179i \(0.212535\pi\)
−0.785250 + 0.619179i \(0.787465\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12.2670 −0.491467
\(624\) 0 0
\(625\) 52.9068 2.11627
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8.91119i 0.355313i
\(630\) 0 0
\(631\) − 45.4681i − 1.81006i −0.425350 0.905029i \(-0.639849\pi\)
0.425350 0.905029i \(-0.360151\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −44.9639 −1.78434
\(636\) 0 0
\(637\) −55.5979 −2.20287
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 5.79972i 0.229075i 0.993419 + 0.114538i \(0.0365386\pi\)
−0.993419 + 0.114538i \(0.963461\pi\)
\(642\) 0 0
\(643\) 0.843927i 0.0332812i 0.999862 + 0.0166406i \(0.00529712\pi\)
−0.999862 + 0.0166406i \(0.994703\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −23.7241 −0.932690 −0.466345 0.884603i \(-0.654430\pi\)
−0.466345 + 0.884603i \(0.654430\pi\)
\(648\) 0 0
\(649\) 6.65046 0.261053
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 49.2248i 1.92632i 0.268936 + 0.963158i \(0.413328\pi\)
−0.268936 + 0.963158i \(0.586672\pi\)
\(654\) 0 0
\(655\) − 14.1750i − 0.553863i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −14.9893 −0.583901 −0.291950 0.956433i \(-0.594304\pi\)
−0.291950 + 0.956433i \(0.594304\pi\)
\(660\) 0 0
\(661\) −43.4268 −1.68911 −0.844554 0.535471i \(-0.820134\pi\)
−0.844554 + 0.535471i \(0.820134\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 101.344i − 3.92994i
\(666\) 0 0
\(667\) − 23.9937i − 0.929038i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.74733 −0.0674549
\(672\) 0 0
\(673\) −25.2488 −0.973268 −0.486634 0.873606i \(-0.661775\pi\)
−0.486634 + 0.873606i \(0.661775\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 29.7236i 1.14237i 0.820821 + 0.571186i \(0.193516\pi\)
−0.820821 + 0.571186i \(0.806484\pi\)
\(678\) 0 0
\(679\) 51.7511i 1.98602i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 2.11219 0.0808206 0.0404103 0.999183i \(-0.487134\pi\)
0.0404103 + 0.999183i \(0.487134\pi\)
\(684\) 0 0
\(685\) 2.72231 0.104014
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 63.2870i 2.41104i
\(690\) 0 0
\(691\) − 26.3122i − 1.00096i −0.865747 0.500482i \(-0.833156\pi\)
0.865747 0.500482i \(-0.166844\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 78.2127 2.96678
\(696\) 0 0
\(697\) −2.98931 −0.113228
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 6.53364i 0.246772i 0.992359 + 0.123386i \(0.0393754\pi\)
−0.992359 + 0.123386i \(0.960625\pi\)
\(702\) 0 0
\(703\) − 33.2556i − 1.25426i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −75.4904 −2.83911
\(708\) 0 0
\(709\) −12.4375 −0.467100 −0.233550 0.972345i \(-0.575034\pi\)
−0.233550 + 0.972345i \(0.575034\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 12.7128i − 0.476098i
\(714\) 0 0
\(715\) 23.4683i 0.877665i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −33.1158 −1.23501 −0.617506 0.786566i \(-0.711857\pi\)
−0.617506 + 0.786566i \(0.711857\pi\)
\(720\) 0 0
\(721\) −69.1323 −2.57462
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 40.4389i − 1.50186i
\(726\) 0 0
\(727\) − 34.8924i − 1.29409i −0.762453 0.647043i \(-0.776005\pi\)
0.762453 0.647043i \(-0.223995\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −9.38033 −0.346944
\(732\) 0 0
\(733\) 48.1498 1.77845 0.889226 0.457468i \(-0.151244\pi\)
0.889226 + 0.457468i \(0.151244\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 11.9494i − 0.440161i
\(738\) 0 0
\(739\) − 36.1371i − 1.32932i −0.747144 0.664662i \(-0.768576\pi\)
0.747144 0.664662i \(-0.231424\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 34.0965 1.25088 0.625440 0.780272i \(-0.284920\pi\)
0.625440 + 0.780272i \(0.284920\pi\)
\(744\) 0 0
\(745\) −52.8421 −1.93598
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 82.2595i 3.00570i
\(750\) 0 0
\(751\) − 38.1730i − 1.39295i −0.717579 0.696477i \(-0.754750\pi\)
0.717579 0.696477i \(-0.245250\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −15.3728 −0.559473
\(756\) 0 0
\(757\) 26.2341 0.953493 0.476747 0.879041i \(-0.341816\pi\)
0.476747 + 0.879041i \(0.341816\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 16.7682i − 0.607846i −0.952697 0.303923i \(-0.901703\pi\)
0.952697 0.303923i \(-0.0982966\pi\)
\(762\) 0 0
\(763\) − 22.2744i − 0.806389i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −38.2224 −1.38013
\(768\) 0 0
\(769\) 37.2331 1.34266 0.671330 0.741159i \(-0.265724\pi\)
0.671330 + 0.741159i \(0.265724\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 36.6106i 1.31679i 0.752672 + 0.658396i \(0.228765\pi\)
−0.752672 + 0.658396i \(0.771235\pi\)
\(774\) 0 0
\(775\) − 21.4262i − 0.769650i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 11.1558 0.399698
\(780\) 0 0
\(781\) 6.92637 0.247845
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 76.7488i − 2.73928i
\(786\) 0 0
\(787\) 43.5146i 1.55113i 0.631268 + 0.775565i \(0.282535\pi\)
−0.631268 + 0.775565i \(0.717465\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 32.3135 1.14893
\(792\) 0 0
\(793\) 10.0425 0.356619
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 9.12345i − 0.323169i −0.986859 0.161585i \(-0.948340\pi\)
0.986859 0.161585i \(-0.0516605\pi\)
\(798\) 0 0
\(799\) 11.7570i 0.415934i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −4.65046 −0.164111
\(804\) 0 0
\(805\) 115.488 4.07043
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 4.58637i − 0.161248i −0.996745 0.0806241i \(-0.974309\pi\)
0.996745 0.0806241i \(-0.0256913\pi\)
\(810\) 0 0
\(811\) − 4.79126i − 0.168244i −0.996455 0.0841220i \(-0.973191\pi\)
0.996455 0.0841220i \(-0.0268085\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −60.3367 −2.11350
\(816\) 0 0
\(817\) 35.0064 1.22472
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 20.3272i 0.709423i 0.934976 + 0.354712i \(0.115421\pi\)
−0.934976 + 0.354712i \(0.884579\pi\)
\(822\) 0 0
\(823\) − 21.4853i − 0.748932i −0.927241 0.374466i \(-0.877826\pi\)
0.927241 0.374466i \(-0.122174\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 9.21198 0.320332 0.160166 0.987090i \(-0.448797\pi\)
0.160166 + 0.987090i \(0.448797\pi\)
\(828\) 0 0
\(829\) 25.2331 0.876381 0.438190 0.898882i \(-0.355620\pi\)
0.438190 + 0.898882i \(0.355620\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 15.7554i 0.545891i
\(834\) 0 0
\(835\) 32.5719i 1.12720i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 3.77270 0.130248 0.0651241 0.997877i \(-0.479256\pi\)
0.0651241 + 0.997877i \(0.479256\pi\)
\(840\) 0 0
\(841\) 17.0000 0.586207
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 81.7967i − 2.81389i
\(846\) 0 0
\(847\) − 4.08334i − 0.140305i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 37.8971 1.29910
\(852\) 0 0
\(853\) −23.2942 −0.797577 −0.398788 0.917043i \(-0.630569\pi\)
−0.398788 + 0.917043i \(0.630569\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 5.59919i − 0.191265i −0.995417 0.0956324i \(-0.969513\pi\)
0.995417 0.0956324i \(-0.0304873\pi\)
\(858\) 0 0
\(859\) − 22.6120i − 0.771510i −0.922601 0.385755i \(-0.873941\pi\)
0.922601 0.385755i \(-0.126059\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 16.7813 0.571240 0.285620 0.958343i \(-0.407800\pi\)
0.285620 + 0.958343i \(0.407800\pi\)
\(864\) 0 0
\(865\) −0.844195 −0.0287035
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0.825984i 0.0280196i
\(870\) 0 0
\(871\) 68.6770i 2.32703i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 111.275 3.76179
\(876\) 0 0
\(877\) −25.2420 −0.852361 −0.426181 0.904638i \(-0.640141\pi\)
−0.426181 + 0.904638i \(0.640141\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 49.4790i 1.66699i 0.552527 + 0.833495i \(0.313664\pi\)
−0.552527 + 0.833495i \(0.686336\pi\)
\(882\) 0 0
\(883\) 4.24079i 0.142714i 0.997451 + 0.0713570i \(0.0227329\pi\)
−0.997451 + 0.0713570i \(0.977267\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 16.8421 0.565501 0.282750 0.959193i \(-0.408753\pi\)
0.282750 + 0.959193i \(0.408753\pi\)
\(888\) 0 0
\(889\) −44.9639 −1.50804
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 43.8760i − 1.46825i
\(894\) 0 0
\(895\) − 34.7215i − 1.16061i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −6.35809 −0.212054
\(900\) 0 0
\(901\) 17.9343 0.597478
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 34.2238i 1.13764i
\(906\) 0 0
\(907\) − 20.8481i − 0.692251i −0.938188 0.346126i \(-0.887497\pi\)
0.938188 0.346126i \(-0.112503\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 38.9728 1.29123 0.645614 0.763664i \(-0.276602\pi\)
0.645614 + 0.763664i \(0.276602\pi\)
\(912\) 0 0
\(913\) −4.67370 −0.154677
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 14.1750i − 0.468100i
\(918\) 0 0
\(919\) − 5.59581i − 0.184589i −0.995732 0.0922944i \(-0.970580\pi\)
0.995732 0.0922944i \(-0.0294201\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −39.8081 −1.31030
\(924\) 0 0
\(925\) 63.8717 2.10009
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 30.2193i 0.991463i 0.868476 + 0.495731i \(0.165100\pi\)
−0.868476 + 0.495731i \(0.834900\pi\)
\(930\) 0 0
\(931\) − 58.7974i − 1.92701i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6.65046 0.217493
\(936\) 0 0
\(937\) 14.2924 0.466912 0.233456 0.972367i \(-0.424997\pi\)
0.233456 + 0.972367i \(0.424997\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 28.5925i − 0.932087i −0.884762 0.466044i \(-0.845679\pi\)
0.884762 0.466044i \(-0.154321\pi\)
\(942\) 0 0
\(943\) 12.7128i 0.413986i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6.35809 −0.206610 −0.103305 0.994650i \(-0.532942\pi\)
−0.103305 + 0.994650i \(0.532942\pi\)
\(948\) 0 0
\(949\) 26.7277 0.867619
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 41.0672i − 1.33030i −0.746711 0.665148i \(-0.768368\pi\)
0.746711 0.665148i \(-0.231632\pi\)
\(954\) 0 0
\(955\) 30.5360i 0.988123i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2.72231 0.0879081
\(960\) 0 0
\(961\) 27.6312 0.891330
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 106.158i 3.41735i
\(966\) 0 0
\(967\) 0.412502i 0.0132652i 0.999978 + 0.00663258i \(0.00211123\pi\)
−0.999978 + 0.00663258i \(0.997889\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 9.56250 0.306875 0.153438 0.988158i \(-0.450966\pi\)
0.153438 + 0.988158i \(0.450966\pi\)
\(972\) 0 0
\(973\) 78.2127 2.50738
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 1.71736i − 0.0549431i −0.999623 0.0274715i \(-0.991254\pi\)
0.999623 0.0274715i \(-0.00874556\pi\)
\(978\) 0 0
\(979\) 3.00416i 0.0960132i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 37.3174 1.19024 0.595120 0.803637i \(-0.297105\pi\)
0.595120 + 0.803637i \(0.297105\pi\)
\(984\) 0 0
\(985\) −8.79558 −0.280251
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 39.8922i 1.26850i
\(990\) 0 0
\(991\) − 31.8820i − 1.01277i −0.862309 0.506383i \(-0.830982\pi\)
0.862309 0.506383i \(-0.169018\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 36.7934 1.16643
\(996\) 0 0
\(997\) 34.2835 1.08577 0.542884 0.839808i \(-0.317332\pi\)
0.542884 + 0.839808i \(0.317332\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6336.2.d.c.3455.1 8
3.2 odd 2 6336.2.d.e.3455.8 8
4.3 odd 2 6336.2.d.e.3455.1 8
8.3 odd 2 1584.2.d.c.287.8 yes 8
8.5 even 2 1584.2.d.d.287.8 yes 8
12.11 even 2 inner 6336.2.d.c.3455.8 8
24.5 odd 2 1584.2.d.c.287.1 8
24.11 even 2 1584.2.d.d.287.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1584.2.d.c.287.1 8 24.5 odd 2
1584.2.d.c.287.8 yes 8 8.3 odd 2
1584.2.d.d.287.1 yes 8 24.11 even 2
1584.2.d.d.287.8 yes 8 8.5 even 2
6336.2.d.c.3455.1 8 1.1 even 1 trivial
6336.2.d.c.3455.8 8 12.11 even 2 inner
6336.2.d.e.3455.1 8 4.3 odd 2
6336.2.d.e.3455.8 8 3.2 odd 2