Properties

Label 16-544e8-1.1-c1e8-0-9
Degree $16$
Conductor $7.670\times 10^{21}$
Sign $1$
Analytic cond. $126767.$
Root an. cond. $2.08419$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·3-s − 8·5-s + 8·7-s + 28·9-s + 16·11-s − 16·13-s − 64·15-s − 16·17-s + 64·21-s + 16·23-s + 40·25-s + 56·27-s − 8·29-s + 8·31-s + 128·33-s − 64·35-s − 40·37-s − 128·39-s + 32·43-s − 224·45-s + 16·47-s + 28·49-s − 128·51-s + 16·53-s − 128·55-s + 8·59-s + 24·61-s + ⋯
L(s)  = 1  + 4.61·3-s − 3.57·5-s + 3.02·7-s + 28/3·9-s + 4.82·11-s − 4.43·13-s − 16.5·15-s − 3.88·17-s + 13.9·21-s + 3.33·23-s + 8·25-s + 10.7·27-s − 1.48·29-s + 1.43·31-s + 22.2·33-s − 10.8·35-s − 6.57·37-s − 20.4·39-s + 4.87·43-s − 33.3·45-s + 2.33·47-s + 4·49-s − 17.9·51-s + 2.19·53-s − 17.2·55-s + 1.04·59-s + 3.07·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{40} \cdot 17^{8}\)
Sign: $1$
Analytic conductor: \(126767.\)
Root analytic conductor: \(2.08419\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{40} \cdot 17^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(23.72198227\)
\(L(\frac12)\) \(\approx\) \(23.72198227\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 + 16 T + 144 T^{2} + 880 T^{3} + 4130 T^{4} + 880 p T^{5} + 144 p^{2} T^{6} + 16 p^{3} T^{7} + p^{4} T^{8} \)
good3 \( 1 - 8 T + 4 p^{2} T^{2} - 40 p T^{3} + 316 T^{4} - 688 T^{5} + 1316 T^{6} - 2320 T^{7} + 3992 T^{8} - 2320 p T^{9} + 1316 p^{2} T^{10} - 688 p^{3} T^{11} + 316 p^{4} T^{12} - 40 p^{6} T^{13} + 4 p^{8} T^{14} - 8 p^{7} T^{15} + p^{8} T^{16} \)
5 \( 1 + 8 T + 24 T^{2} + 24 T^{3} + 18 T^{4} + 296 T^{5} + 1096 T^{6} + 1144 T^{7} - 158 T^{8} + 1144 p T^{9} + 1096 p^{2} T^{10} + 296 p^{3} T^{11} + 18 p^{4} T^{12} + 24 p^{5} T^{13} + 24 p^{6} T^{14} + 8 p^{7} T^{15} + p^{8} T^{16} \)
7 \( 1 - 8 T + 36 T^{2} - 152 T^{3} + 508 T^{4} - 1328 T^{5} + 3396 T^{6} - 8016 T^{7} + 18712 T^{8} - 8016 p T^{9} + 3396 p^{2} T^{10} - 1328 p^{3} T^{11} + 508 p^{4} T^{12} - 152 p^{5} T^{13} + 36 p^{6} T^{14} - 8 p^{7} T^{15} + p^{8} T^{16} \)
11 \( 1 - 16 T + 100 T^{2} - 24 p T^{3} + 84 T^{4} + 576 T^{5} - 1252 T^{6} + 27080 T^{7} - 156616 T^{8} + 27080 p T^{9} - 1252 p^{2} T^{10} + 576 p^{3} T^{11} + 84 p^{4} T^{12} - 24 p^{6} T^{13} + 100 p^{6} T^{14} - 16 p^{7} T^{15} + p^{8} T^{16} \)
13 \( 1 + 16 T + 128 T^{2} + 768 T^{3} + 3968 T^{4} + 17792 T^{5} + 71680 T^{6} + 273360 T^{7} + 1004194 T^{8} + 273360 p T^{9} + 71680 p^{2} T^{10} + 17792 p^{3} T^{11} + 3968 p^{4} T^{12} + 768 p^{5} T^{13} + 128 p^{6} T^{14} + 16 p^{7} T^{15} + p^{8} T^{16} \)
19 \( 1 - 32 T^{2} - 80 T^{3} + 512 T^{4} + 2832 T^{5} - 1184 T^{6} - 22528 T^{7} - 100062 T^{8} - 22528 p T^{9} - 1184 p^{2} T^{10} + 2832 p^{3} T^{11} + 512 p^{4} T^{12} - 80 p^{5} T^{13} - 32 p^{6} T^{14} + p^{8} T^{16} \)
23 \( 1 - 16 T + 100 T^{2} - 168 T^{3} - 876 T^{4} + 3456 T^{5} - 7492 T^{6} + 197672 T^{7} - 1570888 T^{8} + 197672 p T^{9} - 7492 p^{2} T^{10} + 3456 p^{3} T^{11} - 876 p^{4} T^{12} - 168 p^{5} T^{13} + 100 p^{6} T^{14} - 16 p^{7} T^{15} + p^{8} T^{16} \)
29 \( 1 + 8 T - 20 T^{2} - 552 T^{3} - 1146 T^{4} + 20760 T^{5} + 125900 T^{6} - 227320 T^{7} - 4644478 T^{8} - 227320 p T^{9} + 125900 p^{2} T^{10} + 20760 p^{3} T^{11} - 1146 p^{4} T^{12} - 552 p^{5} T^{13} - 20 p^{6} T^{14} + 8 p^{7} T^{15} + p^{8} T^{16} \)
31 \( 1 - 8 T + 92 T^{2} - 320 T^{3} + 3604 T^{4} - 392 p T^{5} + 155636 T^{6} - 13536 p T^{7} + 157064 p T^{8} - 13536 p^{2} T^{9} + 155636 p^{2} T^{10} - 392 p^{4} T^{11} + 3604 p^{4} T^{12} - 320 p^{5} T^{13} + 92 p^{6} T^{14} - 8 p^{7} T^{15} + p^{8} T^{16} \)
37 \( 1 + 40 T + 696 T^{2} + 6520 T^{3} + 29874 T^{4} - 14456 T^{5} - 995480 T^{6} - 5900904 T^{7} - 27444062 T^{8} - 5900904 p T^{9} - 995480 p^{2} T^{10} - 14456 p^{3} T^{11} + 29874 p^{4} T^{12} + 6520 p^{5} T^{13} + 696 p^{6} T^{14} + 40 p^{7} T^{15} + p^{8} T^{16} \)
41 \( 1 - 44 T^{2} + 512 T^{3} + 934 T^{4} - 28416 T^{5} + 158132 T^{6} + 663808 T^{7} - 10407486 T^{8} + 663808 p T^{9} + 158132 p^{2} T^{10} - 28416 p^{3} T^{11} + 934 p^{4} T^{12} + 512 p^{5} T^{13} - 44 p^{6} T^{14} + p^{8} T^{16} \)
43 \( 1 - 32 T + 432 T^{2} - 2736 T^{3} + 640 T^{4} + 122992 T^{5} - 869968 T^{6} + 1577248 T^{7} + 6587042 T^{8} + 1577248 p T^{9} - 869968 p^{2} T^{10} + 122992 p^{3} T^{11} + 640 p^{4} T^{12} - 2736 p^{5} T^{13} + 432 p^{6} T^{14} - 32 p^{7} T^{15} + p^{8} T^{16} \)
47 \( 1 - 16 T + 128 T^{2} - 1392 T^{3} + 8468 T^{4} + 1232 T^{5} - 134784 T^{6} + 2691504 T^{7} - 33833882 T^{8} + 2691504 p T^{9} - 134784 p^{2} T^{10} + 1232 p^{3} T^{11} + 8468 p^{4} T^{12} - 1392 p^{5} T^{13} + 128 p^{6} T^{14} - 16 p^{7} T^{15} + p^{8} T^{16} \)
53 \( 1 - 16 T + 196 T^{2} - 2224 T^{3} + 21000 T^{4} - 179216 T^{5} + 1498924 T^{6} - 11528112 T^{7} + 83946542 T^{8} - 11528112 p T^{9} + 1498924 p^{2} T^{10} - 179216 p^{3} T^{11} + 21000 p^{4} T^{12} - 2224 p^{5} T^{13} + 196 p^{6} T^{14} - 16 p^{7} T^{15} + p^{8} T^{16} \)
59 \( 1 - 8 T + 40 T^{2} + 664 T^{3} - 6048 T^{4} + 36616 T^{5} + 180968 T^{6} - 1710680 T^{7} + 25804610 T^{8} - 1710680 p T^{9} + 180968 p^{2} T^{10} + 36616 p^{3} T^{11} - 6048 p^{4} T^{12} + 664 p^{5} T^{13} + 40 p^{6} T^{14} - 8 p^{7} T^{15} + p^{8} T^{16} \)
61 \( 1 - 24 T + 376 T^{2} - 4344 T^{3} + 42450 T^{4} - 372936 T^{5} + 3081640 T^{6} - 24675240 T^{7} + 191910626 T^{8} - 24675240 p T^{9} + 3081640 p^{2} T^{10} - 372936 p^{3} T^{11} + 42450 p^{4} T^{12} - 4344 p^{5} T^{13} + 376 p^{6} T^{14} - 24 p^{7} T^{15} + p^{8} T^{16} \)
67 \( ( 1 - 16 T + 196 T^{2} - 1040 T^{3} + 8590 T^{4} - 1040 p T^{5} + 196 p^{2} T^{6} - 16 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
71 \( 1 - 8 T + 52 T^{2} - 648 T^{3} + 1404 T^{4} + 2976 T^{5} - 342076 T^{6} + 5998144 T^{7} - 41219752 T^{8} + 5998144 p T^{9} - 342076 p^{2} T^{10} + 2976 p^{3} T^{11} + 1404 p^{4} T^{12} - 648 p^{5} T^{13} + 52 p^{6} T^{14} - 8 p^{7} T^{15} + p^{8} T^{16} \)
73 \( 1 - 24 T + 364 T^{2} - 5736 T^{3} + 73030 T^{4} - 782216 T^{5} + 8485068 T^{6} - 81253240 T^{7} + 689934338 T^{8} - 81253240 p T^{9} + 8485068 p^{2} T^{10} - 782216 p^{3} T^{11} + 73030 p^{4} T^{12} - 5736 p^{5} T^{13} + 364 p^{6} T^{14} - 24 p^{7} T^{15} + p^{8} T^{16} \)
79 \( 1 - 24 T + 284 T^{2} - 3248 T^{3} + 31956 T^{4} - 257656 T^{5} + 2982580 T^{6} - 31942272 T^{7} + 273528312 T^{8} - 31942272 p T^{9} + 2982580 p^{2} T^{10} - 257656 p^{3} T^{11} + 31956 p^{4} T^{12} - 3248 p^{5} T^{13} + 284 p^{6} T^{14} - 24 p^{7} T^{15} + p^{8} T^{16} \)
83 \( 1 + 8 T + 216 T^{2} + 2184 T^{3} + 28000 T^{4} + 310488 T^{5} + 3001496 T^{6} + 30916184 T^{7} + 272377922 T^{8} + 30916184 p T^{9} + 3001496 p^{2} T^{10} + 310488 p^{3} T^{11} + 28000 p^{4} T^{12} + 2184 p^{5} T^{13} + 216 p^{6} T^{14} + 8 p^{7} T^{15} + p^{8} T^{16} \)
89 \( 1 + 32 T + 512 T^{2} + 7504 T^{3} + 116512 T^{4} + 1475408 T^{5} + 15713920 T^{6} + 170899872 T^{7} + 1762186818 T^{8} + 170899872 p T^{9} + 15713920 p^{2} T^{10} + 1475408 p^{3} T^{11} + 116512 p^{4} T^{12} + 7504 p^{5} T^{13} + 512 p^{6} T^{14} + 32 p^{7} T^{15} + p^{8} T^{16} \)
97 \( 1 + 8 T + 168 T^{2} + 1112 T^{3} + 3346 T^{4} - 46936 T^{5} - 1062312 T^{6} - 23230920 T^{7} - 143196062 T^{8} - 23230920 p T^{9} - 1062312 p^{2} T^{10} - 46936 p^{3} T^{11} + 3346 p^{4} T^{12} + 1112 p^{5} T^{13} + 168 p^{6} T^{14} + 8 p^{7} T^{15} + p^{8} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.67358922343948907025009486671, −4.35281595146888677325317785615, −4.21754852745345670915245592640, −4.18145662903227874154376905352, −4.09043546589682039863128180201, −3.97027404362845244749054616603, −3.86918162936026080113508670178, −3.70707682029600685814412048174, −3.70156169547523327411226080950, −3.54069753092911511345386914528, −3.39459147127658861945561480381, −3.13515769475501539860400255555, −2.90371683601490841634746373523, −2.72361530438564849836435117508, −2.52353638571951002244979194039, −2.39719006468243916682251334783, −2.35319757614790467190654464166, −2.25483238750895433165798915692, −2.21015569466994424442300171148, −1.96758724460682588918050020440, −1.63229664846240747359049031519, −1.16605083945495677340367738124, −1.16424913415070108348503547969, −0.73672851997683773907495063667, −0.55564628205413507078714024357, 0.55564628205413507078714024357, 0.73672851997683773907495063667, 1.16424913415070108348503547969, 1.16605083945495677340367738124, 1.63229664846240747359049031519, 1.96758724460682588918050020440, 2.21015569466994424442300171148, 2.25483238750895433165798915692, 2.35319757614790467190654464166, 2.39719006468243916682251334783, 2.52353638571951002244979194039, 2.72361530438564849836435117508, 2.90371683601490841634746373523, 3.13515769475501539860400255555, 3.39459147127658861945561480381, 3.54069753092911511345386914528, 3.70156169547523327411226080950, 3.70707682029600685814412048174, 3.86918162936026080113508670178, 3.97027404362845244749054616603, 4.09043546589682039863128180201, 4.18145662903227874154376905352, 4.21754852745345670915245592640, 4.35281595146888677325317785615, 4.67358922343948907025009486671

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.