Properties

Label 544.2.bx.g.479.1
Level $544$
Weight $2$
Character 544.479
Analytic conductor $4.344$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [544,2,Mod(31,544)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("544.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(544, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 0, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 544 = 2^{5} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 544.bx (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,8,0,-8,0,8,0,-8,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.34386186996\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 479.1
Root \(0.923880 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 544.479
Dual form 544.2.bx.g.159.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.292893 - 1.47247i) q^{3} +(-0.451406 - 0.675577i) q^{5} +(1.70711 + 1.14065i) q^{7} +(0.689246 + 0.285495i) q^{9} +(5.86143 - 1.16591i) q^{11} +(-2.87302 - 2.87302i) q^{13} +(-1.12698 + 0.466811i) q^{15} +(-3.14065 + 2.67139i) q^{17} +(0.555992 + 1.34228i) q^{19} +(2.17958 - 2.17958i) q^{21} +(-0.447215 - 2.24830i) q^{23} +(1.66078 - 4.00948i) q^{25} +(3.12453 - 4.67619i) q^{27} +(2.52814 - 1.68925i) q^{29} +(4.42788 + 0.880761i) q^{31} -8.97229i q^{33} -1.66818i q^{35} +(-9.45349 - 1.88042i) q^{37} +(-5.07193 + 3.38896i) q^{39} +(-0.822155 + 1.23044i) q^{41} +(1.82929 - 4.41629i) q^{43} +(-0.118256 - 0.594513i) q^{45} +(-7.90244 + 7.90244i) q^{47} +(-1.06566 - 2.57273i) q^{49} +(3.01367 + 5.40696i) q^{51} +(-2.40262 + 0.995200i) q^{53} +(-3.43355 - 3.43355i) q^{55} +(2.13932 - 0.425538i) q^{57} +(-0.0912618 - 0.0378019i) q^{59} +(9.64194 + 6.44254i) q^{61} +(0.850966 + 1.27356i) q^{63} +(-0.644047 + 3.23784i) q^{65} +8.34731 q^{67} -3.44155 q^{69} +(-0.472474 + 2.37529i) q^{71} +(4.36335 + 6.53022i) q^{73} +(-5.41742 - 3.61980i) q^{75} +(11.3360 + 4.69552i) q^{77} +(0.654509 - 0.130190i) q^{79} +(-4.38783 - 4.38783i) q^{81} +(-0.243503 + 0.100862i) q^{83} +(3.22243 + 0.915872i) q^{85} +(-1.74690 - 4.21738i) q^{87} +(-7.80317 + 7.80317i) q^{89} +(-1.62743 - 8.18166i) q^{91} +(2.59379 - 6.26197i) q^{93} +(0.655837 - 0.981530i) q^{95} +(-9.48083 + 6.33489i) q^{97} +(4.37283 + 0.869810i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} - 8 q^{5} + 8 q^{7} - 8 q^{9} + 16 q^{11} - 16 q^{13} - 16 q^{15} - 16 q^{17} + 16 q^{23} + 16 q^{25} - 16 q^{27} - 8 q^{29} + 8 q^{31} - 40 q^{37} - 24 q^{39} + 32 q^{43} + 24 q^{45} + 16 q^{47}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/544\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(511\) \(513\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.292893 1.47247i 0.169102 0.850133i −0.799337 0.600883i \(-0.794816\pi\)
0.968439 0.249250i \(-0.0801842\pi\)
\(4\) 0 0
\(5\) −0.451406 0.675577i −0.201875 0.302127i 0.716694 0.697388i \(-0.245654\pi\)
−0.918569 + 0.395260i \(0.870654\pi\)
\(6\) 0 0
\(7\) 1.70711 + 1.14065i 0.645226 + 0.431126i 0.834659 0.550768i \(-0.185665\pi\)
−0.189433 + 0.981894i \(0.560665\pi\)
\(8\) 0 0
\(9\) 0.689246 + 0.285495i 0.229749 + 0.0951651i
\(10\) 0 0
\(11\) 5.86143 1.16591i 1.76729 0.351535i 0.798992 0.601342i \(-0.205367\pi\)
0.968296 + 0.249807i \(0.0803671\pi\)
\(12\) 0 0
\(13\) −2.87302 2.87302i −0.796832 0.796832i 0.185763 0.982595i \(-0.440524\pi\)
−0.982595 + 0.185763i \(0.940524\pi\)
\(14\) 0 0
\(15\) −1.12698 + 0.466811i −0.290986 + 0.120530i
\(16\) 0 0
\(17\) −3.14065 + 2.67139i −0.761720 + 0.647906i
\(18\) 0 0
\(19\) 0.555992 + 1.34228i 0.127553 + 0.307941i 0.974736 0.223361i \(-0.0717029\pi\)
−0.847182 + 0.531302i \(0.821703\pi\)
\(20\) 0 0
\(21\) 2.17958 2.17958i 0.475623 0.475623i
\(22\) 0 0
\(23\) −0.447215 2.24830i −0.0932508 0.468804i −0.998989 0.0449650i \(-0.985682\pi\)
0.905738 0.423839i \(-0.139318\pi\)
\(24\) 0 0
\(25\) 1.66078 4.00948i 0.332156 0.801896i
\(26\) 0 0
\(27\) 3.12453 4.67619i 0.601316 0.899932i
\(28\) 0 0
\(29\) 2.52814 1.68925i 0.469463 0.313685i −0.298240 0.954491i \(-0.596400\pi\)
0.767703 + 0.640806i \(0.221400\pi\)
\(30\) 0 0
\(31\) 4.42788 + 0.880761i 0.795271 + 0.158189i 0.575973 0.817469i \(-0.304623\pi\)
0.219298 + 0.975658i \(0.429623\pi\)
\(32\) 0 0
\(33\) 8.97229i 1.56187i
\(34\) 0 0
\(35\) 1.66818i 0.281974i
\(36\) 0 0
\(37\) −9.45349 1.88042i −1.55414 0.309138i −0.658040 0.752983i \(-0.728614\pi\)
−0.896104 + 0.443845i \(0.853614\pi\)
\(38\) 0 0
\(39\) −5.07193 + 3.38896i −0.812159 + 0.542667i
\(40\) 0 0
\(41\) −0.822155 + 1.23044i −0.128399 + 0.192163i −0.890099 0.455767i \(-0.849365\pi\)
0.761700 + 0.647930i \(0.224365\pi\)
\(42\) 0 0
\(43\) 1.82929 4.41629i 0.278964 0.673479i −0.720844 0.693098i \(-0.756245\pi\)
0.999808 + 0.0196192i \(0.00624538\pi\)
\(44\) 0 0
\(45\) −0.118256 0.594513i −0.0176286 0.0886248i
\(46\) 0 0
\(47\) −7.90244 + 7.90244i −1.15269 + 1.15269i −0.166678 + 0.986011i \(0.553304\pi\)
−0.986011 + 0.166678i \(0.946696\pi\)
\(48\) 0 0
\(49\) −1.06566 2.57273i −0.152237 0.367532i
\(50\) 0 0
\(51\) 3.01367 + 5.40696i 0.421998 + 0.757126i
\(52\) 0 0
\(53\) −2.40262 + 0.995200i −0.330026 + 0.136701i −0.541543 0.840673i \(-0.682160\pi\)
0.211517 + 0.977374i \(0.432160\pi\)
\(54\) 0 0
\(55\) −3.43355 3.43355i −0.462979 0.462979i
\(56\) 0 0
\(57\) 2.13932 0.425538i 0.283360 0.0563639i
\(58\) 0 0
\(59\) −0.0912618 0.0378019i −0.0118813 0.00492138i 0.376735 0.926321i \(-0.377047\pi\)
−0.388616 + 0.921400i \(0.627047\pi\)
\(60\) 0 0
\(61\) 9.64194 + 6.44254i 1.23452 + 0.824882i 0.989486 0.144631i \(-0.0461996\pi\)
0.245038 + 0.969513i \(0.421200\pi\)
\(62\) 0 0
\(63\) 0.850966 + 1.27356i 0.107212 + 0.160454i
\(64\) 0 0
\(65\) −0.644047 + 3.23784i −0.0798841 + 0.401605i
\(66\) 0 0
\(67\) 8.34731 1.01979 0.509893 0.860238i \(-0.329685\pi\)
0.509893 + 0.860238i \(0.329685\pi\)
\(68\) 0 0
\(69\) −3.44155 −0.414314
\(70\) 0 0
\(71\) −0.472474 + 2.37529i −0.0560723 + 0.281895i −0.998641 0.0521180i \(-0.983403\pi\)
0.942569 + 0.334013i \(0.108403\pi\)
\(72\) 0 0
\(73\) 4.36335 + 6.53022i 0.510692 + 0.764304i 0.993791 0.111261i \(-0.0354891\pi\)
−0.483100 + 0.875565i \(0.660489\pi\)
\(74\) 0 0
\(75\) −5.41742 3.61980i −0.625550 0.417979i
\(76\) 0 0
\(77\) 11.3360 + 4.69552i 1.29186 + 0.535104i
\(78\) 0 0
\(79\) 0.654509 0.130190i 0.0736380 0.0146475i −0.158134 0.987418i \(-0.550548\pi\)
0.231772 + 0.972770i \(0.425548\pi\)
\(80\) 0 0
\(81\) −4.38783 4.38783i −0.487537 0.487537i
\(82\) 0 0
\(83\) −0.243503 + 0.100862i −0.0267279 + 0.0110711i −0.396007 0.918247i \(-0.629605\pi\)
0.369279 + 0.929318i \(0.379605\pi\)
\(84\) 0 0
\(85\) 3.22243 + 0.915872i 0.349522 + 0.0993403i
\(86\) 0 0
\(87\) −1.74690 4.21738i −0.187287 0.452151i
\(88\) 0 0
\(89\) −7.80317 + 7.80317i −0.827134 + 0.827134i −0.987119 0.159985i \(-0.948855\pi\)
0.159985 + 0.987119i \(0.448855\pi\)
\(90\) 0 0
\(91\) −1.62743 8.18166i −0.170601 0.857671i
\(92\) 0 0
\(93\) 2.59379 6.26197i 0.268964 0.649336i
\(94\) 0 0
\(95\) 0.655837 0.981530i 0.0672875 0.100703i
\(96\) 0 0
\(97\) −9.48083 + 6.33489i −0.962632 + 0.643210i −0.934338 0.356389i \(-0.884008\pi\)
−0.0282946 + 0.999600i \(0.509008\pi\)
\(98\) 0 0
\(99\) 4.37283 + 0.869810i 0.439486 + 0.0874192i
\(100\) 0 0
\(101\) 18.1355i 1.80455i 0.431164 + 0.902274i \(0.358103\pi\)
−0.431164 + 0.902274i \(0.641897\pi\)
\(102\) 0 0
\(103\) 3.56767i 0.351533i −0.984432 0.175767i \(-0.943760\pi\)
0.984432 0.175767i \(-0.0562404\pi\)
\(104\) 0 0
\(105\) −2.45635 0.488598i −0.239715 0.0476823i
\(106\) 0 0
\(107\) −12.1953 + 8.14866i −1.17897 + 0.787761i −0.981295 0.192508i \(-0.938338\pi\)
−0.197672 + 0.980268i \(0.563338\pi\)
\(108\) 0 0
\(109\) 1.47666 2.20998i 0.141439 0.211678i −0.753987 0.656890i \(-0.771872\pi\)
0.895425 + 0.445212i \(0.146872\pi\)
\(110\) 0 0
\(111\) −5.53772 + 13.3692i −0.525618 + 1.26895i
\(112\) 0 0
\(113\) 2.89088 + 14.5334i 0.271951 + 1.36719i 0.839280 + 0.543699i \(0.182977\pi\)
−0.567330 + 0.823491i \(0.692023\pi\)
\(114\) 0 0
\(115\) −1.31703 + 1.31703i −0.122813 + 0.122813i
\(116\) 0 0
\(117\) −1.15998 2.80045i −0.107241 0.258902i
\(118\) 0 0
\(119\) −8.40855 + 0.977949i −0.770811 + 0.0896484i
\(120\) 0 0
\(121\) 22.8343 9.45829i 2.07585 0.859844i
\(122\) 0 0
\(123\) 1.57099 + 1.57099i 0.141651 + 0.141651i
\(124\) 0 0
\(125\) −7.44288 + 1.48048i −0.665712 + 0.132418i
\(126\) 0 0
\(127\) 13.1749 + 5.45721i 1.16908 + 0.484249i 0.880889 0.473323i \(-0.156946\pi\)
0.288192 + 0.957573i \(0.406946\pi\)
\(128\) 0 0
\(129\) −5.96709 3.98708i −0.525373 0.351043i
\(130\) 0 0
\(131\) −7.71511 11.5465i −0.674073 1.00882i −0.998029 0.0627491i \(-0.980013\pi\)
0.323957 0.946072i \(-0.394987\pi\)
\(132\) 0 0
\(133\) −0.581941 + 2.92562i −0.0504607 + 0.253683i
\(134\) 0 0
\(135\) −4.56955 −0.393284
\(136\) 0 0
\(137\) 15.8174 1.35137 0.675687 0.737189i \(-0.263847\pi\)
0.675687 + 0.737189i \(0.263847\pi\)
\(138\) 0 0
\(139\) −1.03594 + 5.20805i −0.0878677 + 0.441741i 0.911658 + 0.410949i \(0.134803\pi\)
−0.999526 + 0.0307913i \(0.990197\pi\)
\(140\) 0 0
\(141\) 9.32156 + 13.9507i 0.785017 + 1.17486i
\(142\) 0 0
\(143\) −20.1897 13.4903i −1.68834 1.12812i
\(144\) 0 0
\(145\) −2.28243 0.945414i −0.189546 0.0785123i
\(146\) 0 0
\(147\) −4.10040 + 0.815619i −0.338195 + 0.0672712i
\(148\) 0 0
\(149\) −5.49661 5.49661i −0.450299 0.450299i 0.445154 0.895454i \(-0.353149\pi\)
−0.895454 + 0.445154i \(0.853149\pi\)
\(150\) 0 0
\(151\) 0.568536 0.235495i 0.0462668 0.0191643i −0.359430 0.933172i \(-0.617029\pi\)
0.405697 + 0.914008i \(0.367029\pi\)
\(152\) 0 0
\(153\) −2.92735 + 0.944602i −0.236662 + 0.0763665i
\(154\) 0 0
\(155\) −1.40375 3.38896i −0.112752 0.272207i
\(156\) 0 0
\(157\) −4.04373 + 4.04373i −0.322725 + 0.322725i −0.849811 0.527087i \(-0.823284\pi\)
0.527087 + 0.849811i \(0.323284\pi\)
\(158\) 0 0
\(159\) 0.761693 + 3.82929i 0.0604062 + 0.303682i
\(160\) 0 0
\(161\) 1.80109 4.34821i 0.141946 0.342687i
\(162\) 0 0
\(163\) −7.64318 + 11.4388i −0.598660 + 0.895959i −0.999799 0.0200588i \(-0.993615\pi\)
0.401138 + 0.916017i \(0.368615\pi\)
\(164\) 0 0
\(165\) −6.06147 + 4.05014i −0.471885 + 0.315303i
\(166\) 0 0
\(167\) 12.5062 + 2.48764i 0.967761 + 0.192500i 0.653575 0.756862i \(-0.273268\pi\)
0.314186 + 0.949361i \(0.398268\pi\)
\(168\) 0 0
\(169\) 3.50846i 0.269881i
\(170\) 0 0
\(171\) 1.08390i 0.0828877i
\(172\) 0 0
\(173\) −8.51608 1.69395i −0.647466 0.128789i −0.139576 0.990211i \(-0.544574\pi\)
−0.507889 + 0.861422i \(0.669574\pi\)
\(174\) 0 0
\(175\) 7.40855 4.95024i 0.560034 0.374203i
\(176\) 0 0
\(177\) −0.0823922 + 0.123309i −0.00619298 + 0.00926845i
\(178\) 0 0
\(179\) −6.00208 + 14.4903i −0.448617 + 1.08306i 0.524224 + 0.851580i \(0.324355\pi\)
−0.972841 + 0.231476i \(0.925645\pi\)
\(180\) 0 0
\(181\) −3.56706 17.9328i −0.265138 1.33294i −0.852124 0.523340i \(-0.824686\pi\)
0.586986 0.809597i \(-0.300314\pi\)
\(182\) 0 0
\(183\) 12.3105 12.3105i 0.910020 0.910020i
\(184\) 0 0
\(185\) 2.99699 + 7.23539i 0.220343 + 0.531956i
\(186\) 0 0
\(187\) −15.2941 + 19.3199i −1.11842 + 1.41281i
\(188\) 0 0
\(189\) 10.6678 4.41875i 0.775969 0.321417i
\(190\) 0 0
\(191\) −6.58995 6.58995i −0.476832 0.476832i 0.427285 0.904117i \(-0.359470\pi\)
−0.904117 + 0.427285i \(0.859470\pi\)
\(192\) 0 0
\(193\) −18.5551 + 3.69084i −1.33563 + 0.265672i −0.810693 0.585471i \(-0.800909\pi\)
−0.524932 + 0.851144i \(0.675909\pi\)
\(194\) 0 0
\(195\) 4.57900 + 1.89668i 0.327909 + 0.135824i
\(196\) 0 0
\(197\) −19.4824 13.0178i −1.38807 0.927476i −0.999983 0.00585217i \(-0.998137\pi\)
−0.388084 0.921624i \(-0.626863\pi\)
\(198\) 0 0
\(199\) 10.7961 + 16.1575i 0.765316 + 1.14538i 0.985460 + 0.169909i \(0.0543475\pi\)
−0.220143 + 0.975468i \(0.570653\pi\)
\(200\) 0 0
\(201\) 2.44487 12.2912i 0.172448 0.866954i
\(202\) 0 0
\(203\) 6.24264 0.438147
\(204\) 0 0
\(205\) 1.20238 0.0839781
\(206\) 0 0
\(207\) 0.333638 1.67731i 0.0231895 0.116581i
\(208\) 0 0
\(209\) 4.82389 + 7.21946i 0.333676 + 0.499381i
\(210\) 0 0
\(211\) −12.4136 8.29449i −0.854586 0.571016i 0.0493028 0.998784i \(-0.484300\pi\)
−0.903889 + 0.427768i \(0.859300\pi\)
\(212\) 0 0
\(213\) 3.35916 + 1.39141i 0.230166 + 0.0953378i
\(214\) 0 0
\(215\) −3.80930 + 0.757716i −0.259792 + 0.0516758i
\(216\) 0 0
\(217\) 6.55423 + 6.55423i 0.444930 + 0.444930i
\(218\) 0 0
\(219\) 10.8936 4.51226i 0.736119 0.304911i
\(220\) 0 0
\(221\) 16.6981 + 1.34821i 1.12323 + 0.0906904i
\(222\) 0 0
\(223\) −0.583332 1.40829i −0.0390628 0.0943059i 0.903144 0.429338i \(-0.141253\pi\)
−0.942207 + 0.335032i \(0.891253\pi\)
\(224\) 0 0
\(225\) 2.28937 2.28937i 0.152625 0.152625i
\(226\) 0 0
\(227\) −0.753047 3.78583i −0.0499815 0.251274i 0.947714 0.319120i \(-0.103387\pi\)
−0.997696 + 0.0678460i \(0.978387\pi\)
\(228\) 0 0
\(229\) 6.65440 16.0651i 0.439735 1.06161i −0.536305 0.844024i \(-0.680180\pi\)
0.976040 0.217590i \(-0.0698196\pi\)
\(230\) 0 0
\(231\) 10.2343 15.3167i 0.673365 1.00776i
\(232\) 0 0
\(233\) 3.28943 2.19793i 0.215498 0.143991i −0.443137 0.896454i \(-0.646134\pi\)
0.658635 + 0.752463i \(0.271134\pi\)
\(234\) 0 0
\(235\) 8.90591 + 1.77150i 0.580957 + 0.115560i
\(236\) 0 0
\(237\) 1.00188i 0.0650790i
\(238\) 0 0
\(239\) 29.4189i 1.90295i −0.307725 0.951475i \(-0.599568\pi\)
0.307725 0.951475i \(-0.400432\pi\)
\(240\) 0 0
\(241\) −18.9570 3.77078i −1.22113 0.242897i −0.457885 0.889011i \(-0.651393\pi\)
−0.763241 + 0.646114i \(0.776393\pi\)
\(242\) 0 0
\(243\) 6.28243 4.19779i 0.403018 0.269288i
\(244\) 0 0
\(245\) −1.25703 + 1.88128i −0.0803087 + 0.120190i
\(246\) 0 0
\(247\) 2.25903 5.45378i 0.143739 0.347016i
\(248\) 0 0
\(249\) 0.0771965 + 0.388093i 0.00489213 + 0.0245944i
\(250\) 0 0
\(251\) −6.70769 + 6.70769i −0.423386 + 0.423386i −0.886368 0.462982i \(-0.846779\pi\)
0.462982 + 0.886368i \(0.346779\pi\)
\(252\) 0 0
\(253\) −5.24264 12.6569i −0.329602 0.795730i
\(254\) 0 0
\(255\) 2.29243 4.47670i 0.143557 0.280342i
\(256\) 0 0
\(257\) 4.53666 1.87915i 0.282989 0.117218i −0.236674 0.971589i \(-0.576057\pi\)
0.519663 + 0.854371i \(0.326057\pi\)
\(258\) 0 0
\(259\) −13.9932 13.9932i −0.869496 0.869496i
\(260\) 0 0
\(261\) 2.22478 0.442536i 0.137710 0.0273923i
\(262\) 0 0
\(263\) 24.8112 + 10.2771i 1.52992 + 0.633715i 0.979549 0.201204i \(-0.0644854\pi\)
0.550373 + 0.834919i \(0.314485\pi\)
\(264\) 0 0
\(265\) 1.75689 + 1.17392i 0.107925 + 0.0721132i
\(266\) 0 0
\(267\) 9.20447 + 13.7755i 0.563304 + 0.843044i
\(268\) 0 0
\(269\) −0.609085 + 3.06208i −0.0371366 + 0.186698i −0.994901 0.100856i \(-0.967842\pi\)
0.957765 + 0.287554i \(0.0928420\pi\)
\(270\) 0 0
\(271\) 31.5213 1.91478 0.957392 0.288792i \(-0.0932536\pi\)
0.957392 + 0.288792i \(0.0932536\pi\)
\(272\) 0 0
\(273\) −12.5239 −0.757984
\(274\) 0 0
\(275\) 5.05985 25.4376i 0.305121 1.53394i
\(276\) 0 0
\(277\) 2.07019 + 3.09826i 0.124386 + 0.186157i 0.888436 0.459000i \(-0.151792\pi\)
−0.764050 + 0.645157i \(0.776792\pi\)
\(278\) 0 0
\(279\) 2.80045 + 1.87120i 0.167659 + 0.112026i
\(280\) 0 0
\(281\) 6.44092 + 2.66791i 0.384233 + 0.159154i 0.566435 0.824107i \(-0.308322\pi\)
−0.182202 + 0.983261i \(0.558322\pi\)
\(282\) 0 0
\(283\) 14.0201 2.78877i 0.833408 0.165775i 0.240097 0.970749i \(-0.422821\pi\)
0.593310 + 0.804974i \(0.297821\pi\)
\(284\) 0 0
\(285\) −1.25319 1.25319i −0.0742324 0.0742324i
\(286\) 0 0
\(287\) −2.80701 + 1.16270i −0.165693 + 0.0686322i
\(288\) 0 0
\(289\) 2.72739 16.7798i 0.160435 0.987046i
\(290\) 0 0
\(291\) 6.55108 + 15.8157i 0.384031 + 0.927133i
\(292\) 0 0
\(293\) −23.6925 + 23.6925i −1.38413 + 1.38413i −0.546997 + 0.837134i \(0.684229\pi\)
−0.837134 + 0.546997i \(0.815771\pi\)
\(294\) 0 0
\(295\) 0.0156580 + 0.0787183i 0.000911647 + 0.00458316i
\(296\) 0 0
\(297\) 12.8622 31.0521i 0.746339 1.80182i
\(298\) 0 0
\(299\) −5.17456 + 7.74427i −0.299252 + 0.447863i
\(300\) 0 0
\(301\) 8.16025 5.45250i 0.470349 0.314277i
\(302\) 0 0
\(303\) 26.7040 + 5.31176i 1.53411 + 0.305153i
\(304\) 0 0
\(305\) 9.42207i 0.539506i
\(306\) 0 0
\(307\) 26.6961i 1.52363i 0.647797 + 0.761813i \(0.275690\pi\)
−0.647797 + 0.761813i \(0.724310\pi\)
\(308\) 0 0
\(309\) −5.25331 1.04495i −0.298850 0.0594450i
\(310\) 0 0
\(311\) −26.8467 + 17.9384i −1.52234 + 1.01719i −0.537592 + 0.843205i \(0.680666\pi\)
−0.984748 + 0.173989i \(0.944334\pi\)
\(312\) 0 0
\(313\) −8.56680 + 12.8211i −0.484224 + 0.724693i −0.990475 0.137694i \(-0.956031\pi\)
0.506251 + 0.862386i \(0.331031\pi\)
\(314\) 0 0
\(315\) 0.476257 1.14979i 0.0268340 0.0647831i
\(316\) 0 0
\(317\) 0.445744 + 2.24090i 0.0250355 + 0.125862i 0.991282 0.131757i \(-0.0420620\pi\)
−0.966247 + 0.257619i \(0.917062\pi\)
\(318\) 0 0
\(319\) 12.8490 12.8490i 0.719405 0.719405i
\(320\) 0 0
\(321\) 8.42676 + 20.3440i 0.470336 + 1.13549i
\(322\) 0 0
\(323\) −5.33194 2.73038i −0.296677 0.151922i
\(324\) 0 0
\(325\) −16.2908 + 6.74785i −0.903649 + 0.374303i
\(326\) 0 0
\(327\) −2.82164 2.82164i −0.156037 0.156037i
\(328\) 0 0
\(329\) −22.5042 + 4.47637i −1.24070 + 0.246790i
\(330\) 0 0
\(331\) −20.1510 8.34682i −1.10760 0.458783i −0.247489 0.968891i \(-0.579605\pi\)
−0.860110 + 0.510108i \(0.829605\pi\)
\(332\) 0 0
\(333\) −5.97893 3.99499i −0.327643 0.218924i
\(334\) 0 0
\(335\) −3.76802 5.63925i −0.205869 0.308105i
\(336\) 0 0
\(337\) 4.43095 22.2759i 0.241369 1.21344i −0.649918 0.760005i \(-0.725197\pi\)
0.891287 0.453440i \(-0.149803\pi\)
\(338\) 0 0
\(339\) 22.2468 1.20828
\(340\) 0 0
\(341\) 26.9806 1.46108
\(342\) 0 0
\(343\) 3.91920 19.7032i 0.211617 1.06387i
\(344\) 0 0
\(345\) 1.55354 + 2.32503i 0.0836396 + 0.125176i
\(346\) 0 0
\(347\) 15.8449 + 10.5872i 0.850599 + 0.568352i 0.902691 0.430290i \(-0.141589\pi\)
−0.0520914 + 0.998642i \(0.516589\pi\)
\(348\) 0 0
\(349\) 26.6494 + 11.0386i 1.42651 + 0.590880i 0.956487 0.291774i \(-0.0942454\pi\)
0.470024 + 0.882654i \(0.344245\pi\)
\(350\) 0 0
\(351\) −22.4116 + 4.45794i −1.19624 + 0.237947i
\(352\) 0 0
\(353\) −17.3428 17.3428i −0.923063 0.923063i 0.0741821 0.997245i \(-0.476365\pi\)
−0.997245 + 0.0741821i \(0.976365\pi\)
\(354\) 0 0
\(355\) 1.81796 0.753026i 0.0964876 0.0399665i
\(356\) 0 0
\(357\) −1.02280 + 12.6678i −0.0541325 + 0.670451i
\(358\) 0 0
\(359\) 2.90036 + 7.00208i 0.153075 + 0.369556i 0.981750 0.190174i \(-0.0609051\pi\)
−0.828675 + 0.559729i \(0.810905\pi\)
\(360\) 0 0
\(361\) 11.9424 11.9424i 0.628549 0.628549i
\(362\) 0 0
\(363\) −7.23906 36.3932i −0.379952 1.91015i
\(364\) 0 0
\(365\) 2.44202 5.89556i 0.127821 0.308588i
\(366\) 0 0
\(367\) 13.5738 20.3147i 0.708548 1.06042i −0.286211 0.958167i \(-0.592396\pi\)
0.994759 0.102250i \(-0.0326042\pi\)
\(368\) 0 0
\(369\) −0.917953 + 0.613357i −0.0477867 + 0.0319301i
\(370\) 0 0
\(371\) −5.23671 1.04165i −0.271877 0.0540796i
\(372\) 0 0
\(373\) 32.6500i 1.69055i −0.534329 0.845277i \(-0.679436\pi\)
0.534329 0.845277i \(-0.320564\pi\)
\(374\) 0 0
\(375\) 11.3931i 0.588336i
\(376\) 0 0
\(377\) −12.1166 2.41014i −0.624037 0.124129i
\(378\) 0 0
\(379\) −28.3478 + 18.9414i −1.45613 + 0.972953i −0.459737 + 0.888055i \(0.652056\pi\)
−0.996390 + 0.0848974i \(0.972944\pi\)
\(380\) 0 0
\(381\) 11.8944 17.8013i 0.609370 0.911987i
\(382\) 0 0
\(383\) −9.14594 + 22.0803i −0.467336 + 1.12825i 0.497986 + 0.867185i \(0.334073\pi\)
−0.965322 + 0.261063i \(0.915927\pi\)
\(384\) 0 0
\(385\) −1.94495 9.77791i −0.0991237 0.498328i
\(386\) 0 0
\(387\) 2.52166 2.52166i 0.128183 0.128183i
\(388\) 0 0
\(389\) 3.33304 + 8.04667i 0.168992 + 0.407982i 0.985574 0.169247i \(-0.0541337\pi\)
−0.816582 + 0.577230i \(0.804134\pi\)
\(390\) 0 0
\(391\) 7.41063 + 5.86645i 0.374772 + 0.296679i
\(392\) 0 0
\(393\) −19.2616 + 7.97842i −0.971619 + 0.402458i
\(394\) 0 0
\(395\) −0.383402 0.383402i −0.0192911 0.0192911i
\(396\) 0 0
\(397\) 1.39635 0.277752i 0.0700810 0.0139400i −0.159925 0.987129i \(-0.551125\pi\)
0.230006 + 0.973189i \(0.426125\pi\)
\(398\) 0 0
\(399\) 4.13744 + 1.71379i 0.207131 + 0.0857966i
\(400\) 0 0
\(401\) 6.27920 + 4.19562i 0.313568 + 0.209519i 0.702388 0.711794i \(-0.252117\pi\)
−0.388820 + 0.921314i \(0.627117\pi\)
\(402\) 0 0
\(403\) −10.1909 15.2518i −0.507647 0.759748i
\(404\) 0 0
\(405\) −0.983623 + 4.94501i −0.0488766 + 0.245719i
\(406\) 0 0
\(407\) −57.6033 −2.85529
\(408\) 0 0
\(409\) 2.27542 0.112512 0.0562561 0.998416i \(-0.482084\pi\)
0.0562561 + 0.998416i \(0.482084\pi\)
\(410\) 0 0
\(411\) 4.63281 23.2907i 0.228520 1.14885i
\(412\) 0 0
\(413\) −0.112675 0.168630i −0.00554436 0.00829773i
\(414\) 0 0
\(415\) 0.178059 + 0.118975i 0.00874056 + 0.00584025i
\(416\) 0 0
\(417\) 7.36529 + 3.05080i 0.360680 + 0.149398i
\(418\) 0 0
\(419\) 11.8423 2.35558i 0.578534 0.115078i 0.102855 0.994696i \(-0.467202\pi\)
0.475679 + 0.879619i \(0.342202\pi\)
\(420\) 0 0
\(421\) −12.6612 12.6612i −0.617069 0.617069i 0.327710 0.944778i \(-0.393723\pi\)
−0.944778 + 0.327710i \(0.893723\pi\)
\(422\) 0 0
\(423\) −7.70284 + 3.19062i −0.374525 + 0.155133i
\(424\) 0 0
\(425\) 5.49493 + 17.0290i 0.266543 + 0.826026i
\(426\) 0 0
\(427\) 9.11112 + 21.9962i 0.440918 + 1.06447i
\(428\) 0 0
\(429\) −25.7775 + 25.7775i −1.24455 + 1.24455i
\(430\) 0 0
\(431\) 5.64894 + 28.3991i 0.272100 + 1.36794i 0.838991 + 0.544145i \(0.183146\pi\)
−0.566891 + 0.823793i \(0.691854\pi\)
\(432\) 0 0
\(433\) −3.21946 + 7.77247i −0.154718 + 0.373521i −0.982165 0.188022i \(-0.939792\pi\)
0.827447 + 0.561543i \(0.189792\pi\)
\(434\) 0 0
\(435\) −2.06061 + 3.08391i −0.0987985 + 0.147862i
\(436\) 0 0
\(437\) 2.76921 1.85033i 0.132469 0.0885132i
\(438\) 0 0
\(439\) 3.01800 + 0.600318i 0.144041 + 0.0286516i 0.266584 0.963812i \(-0.414105\pi\)
−0.122543 + 0.992463i \(0.539105\pi\)
\(440\) 0 0
\(441\) 2.07748i 0.0989277i
\(442\) 0 0
\(443\) 0.275866i 0.0131068i −0.999979 0.00655340i \(-0.997914\pi\)
0.999979 0.00655340i \(-0.00208603\pi\)
\(444\) 0 0
\(445\) 8.79403 + 1.74924i 0.416877 + 0.0829220i
\(446\) 0 0
\(447\) −9.70353 + 6.48369i −0.458961 + 0.306668i
\(448\) 0 0
\(449\) −16.0469 + 24.0159i −0.757300 + 1.13338i 0.229794 + 0.973239i \(0.426195\pi\)
−0.987094 + 0.160141i \(0.948805\pi\)
\(450\) 0 0
\(451\) −3.38442 + 8.17071i −0.159366 + 0.384744i
\(452\) 0 0
\(453\) −0.180240 0.906129i −0.00846842 0.0425736i
\(454\) 0 0
\(455\) −4.79271 + 4.79271i −0.224686 + 0.224686i
\(456\) 0 0
\(457\) 2.67532 + 6.45880i 0.125146 + 0.302130i 0.974019 0.226468i \(-0.0727179\pi\)
−0.848872 + 0.528598i \(0.822718\pi\)
\(458\) 0 0
\(459\) 2.67884 + 23.0331i 0.125038 + 1.07509i
\(460\) 0 0
\(461\) −15.4068 + 6.38170i −0.717566 + 0.297225i −0.711431 0.702756i \(-0.751953\pi\)
−0.00613444 + 0.999981i \(0.501953\pi\)
\(462\) 0 0
\(463\) −26.1409 26.1409i −1.21487 1.21487i −0.969406 0.245463i \(-0.921060\pi\)
−0.245463 0.969406i \(-0.578940\pi\)
\(464\) 0 0
\(465\) −5.40130 + 1.07438i −0.250479 + 0.0498234i
\(466\) 0 0
\(467\) 4.94703 + 2.04913i 0.228921 + 0.0948223i 0.494196 0.869351i \(-0.335463\pi\)
−0.265275 + 0.964173i \(0.585463\pi\)
\(468\) 0 0
\(469\) 14.2497 + 9.52138i 0.657992 + 0.439656i
\(470\) 0 0
\(471\) 4.76990 + 7.13866i 0.219786 + 0.328932i
\(472\) 0 0
\(473\) 5.57324 28.0186i 0.256258 1.28830i
\(474\) 0 0
\(475\) 6.30524 0.289304
\(476\) 0 0
\(477\) −1.94013 −0.0888322
\(478\) 0 0
\(479\) 1.84210 9.26085i 0.0841676 0.423139i −0.915610 0.402067i \(-0.868292\pi\)
0.999778 0.0210722i \(-0.00670799\pi\)
\(480\) 0 0
\(481\) 21.7576 + 32.5625i 0.992060 + 1.48472i
\(482\) 0 0
\(483\) −5.87510 3.92562i −0.267326 0.178622i
\(484\) 0 0
\(485\) 8.55940 + 3.54542i 0.388662 + 0.160989i
\(486\) 0 0
\(487\) −0.144124 + 0.0286680i −0.00653088 + 0.00129907i −0.198355 0.980130i \(-0.563560\pi\)
0.191824 + 0.981429i \(0.438560\pi\)
\(488\) 0 0
\(489\) 14.6047 + 14.6047i 0.660449 + 0.660449i
\(490\) 0 0
\(491\) −5.79184 + 2.39906i −0.261382 + 0.108268i −0.509526 0.860455i \(-0.670179\pi\)
0.248144 + 0.968723i \(0.420179\pi\)
\(492\) 0 0
\(493\) −3.42737 + 12.0590i −0.154361 + 0.543108i
\(494\) 0 0
\(495\) −1.38630 3.34682i −0.0623095 0.150428i
\(496\) 0 0
\(497\) −3.51594 + 3.51594i −0.157711 + 0.157711i
\(498\) 0 0
\(499\) −4.94943 24.8825i −0.221567 1.11389i −0.918094 0.396362i \(-0.870273\pi\)
0.696527 0.717530i \(-0.254727\pi\)
\(500\) 0 0
\(501\) 7.32598 17.6865i 0.327301 0.790174i
\(502\) 0 0
\(503\) 10.4418 15.6273i 0.465578 0.696786i −0.522171 0.852841i \(-0.674878\pi\)
0.987748 + 0.156055i \(0.0498776\pi\)
\(504\) 0 0
\(505\) 12.2519 8.18646i 0.545203 0.364293i
\(506\) 0 0
\(507\) 5.16611 + 1.02760i 0.229435 + 0.0456375i
\(508\) 0 0
\(509\) 14.0438i 0.622479i −0.950332 0.311239i \(-0.899256\pi\)
0.950332 0.311239i \(-0.100744\pi\)
\(510\) 0 0
\(511\) 16.1248i 0.713321i
\(512\) 0 0
\(513\) 8.01398 + 1.59408i 0.353826 + 0.0703804i
\(514\) 0 0
\(515\) −2.41024 + 1.61047i −0.106208 + 0.0709657i
\(516\) 0 0
\(517\) −37.1060 + 55.5331i −1.63192 + 2.44234i
\(518\) 0 0
\(519\) −4.98860 + 12.0436i −0.218975 + 0.528653i
\(520\) 0 0
\(521\) 4.50770 + 22.6617i 0.197486 + 0.992829i 0.944623 + 0.328158i \(0.106428\pi\)
−0.747137 + 0.664670i \(0.768572\pi\)
\(522\) 0 0
\(523\) 16.4969 16.4969i 0.721359 0.721359i −0.247523 0.968882i \(-0.579617\pi\)
0.968882 + 0.247523i \(0.0796167\pi\)
\(524\) 0 0
\(525\) −5.11918 12.3588i −0.223419 0.539382i
\(526\) 0 0
\(527\) −16.2593 + 9.06242i −0.708266 + 0.394765i
\(528\) 0 0
\(529\) 16.3944 6.79077i 0.712798 0.295251i
\(530\) 0 0
\(531\) −0.0521096 0.0521096i −0.00226136 0.00226136i
\(532\) 0 0
\(533\) 5.89715 1.17302i 0.255434 0.0508090i
\(534\) 0 0
\(535\) 11.0101 + 4.56053i 0.476008 + 0.197169i
\(536\) 0 0
\(537\) 19.5786 + 13.0820i 0.844880 + 0.564531i
\(538\) 0 0
\(539\) −9.24585 13.8374i −0.398247 0.596019i
\(540\) 0 0
\(541\) 2.18195 10.9694i 0.0938095 0.471612i −0.905112 0.425174i \(-0.860213\pi\)
0.998921 0.0464384i \(-0.0147871\pi\)
\(542\) 0 0
\(543\) −27.4504 −1.17801
\(544\) 0 0
\(545\) −2.15959 −0.0925066
\(546\) 0 0
\(547\) 0.783986 3.94137i 0.0335208 0.168521i −0.960399 0.278629i \(-0.910120\pi\)
0.993920 + 0.110109i \(0.0351199\pi\)
\(548\) 0 0
\(549\) 4.80636 + 7.19322i 0.205130 + 0.306999i
\(550\) 0 0
\(551\) 3.67307 + 2.45427i 0.156478 + 0.104555i
\(552\) 0 0
\(553\) 1.26582 + 0.524319i 0.0538281 + 0.0222963i
\(554\) 0 0
\(555\) 11.5317 2.29380i 0.489494 0.0973664i
\(556\) 0 0
\(557\) 27.3910 + 27.3910i 1.16059 + 1.16059i 0.984346 + 0.176249i \(0.0563964\pi\)
0.176249 + 0.984346i \(0.443604\pi\)
\(558\) 0 0
\(559\) −17.9437 + 7.43251i −0.758936 + 0.314362i
\(560\) 0 0
\(561\) 23.9684 + 28.1788i 1.01195 + 1.18971i
\(562\) 0 0
\(563\) −4.44883 10.7404i −0.187496 0.452655i 0.801980 0.597350i \(-0.203780\pi\)
−0.989476 + 0.144695i \(0.953780\pi\)
\(564\) 0 0
\(565\) 8.51348 8.51348i 0.358165 0.358165i
\(566\) 0 0
\(567\) −2.48551 12.4955i −0.104381 0.524761i
\(568\) 0 0
\(569\) −4.58727 + 11.0746i −0.192308 + 0.464273i −0.990395 0.138270i \(-0.955846\pi\)
0.798086 + 0.602543i \(0.205846\pi\)
\(570\) 0 0
\(571\) −7.09451 + 10.6177i −0.296896 + 0.444336i −0.949686 0.313202i \(-0.898598\pi\)
0.652790 + 0.757539i \(0.273598\pi\)
\(572\) 0 0
\(573\) −11.6337 + 7.77337i −0.486004 + 0.324737i
\(574\) 0 0
\(575\) −9.75725 1.94084i −0.406905 0.0809385i
\(576\) 0 0
\(577\) 5.19597i 0.216311i 0.994134 + 0.108156i \(0.0344944\pi\)
−0.994134 + 0.108156i \(0.965506\pi\)
\(578\) 0 0
\(579\) 28.4029i 1.18039i
\(580\) 0 0
\(581\) −0.530734 0.105570i −0.0220185 0.00437976i
\(582\) 0 0
\(583\) −12.9225 + 8.63454i −0.535195 + 0.357606i
\(584\) 0 0
\(585\) −1.36829 + 2.04780i −0.0565720 + 0.0846660i
\(586\) 0 0
\(587\) 9.13915 22.0639i 0.377213 0.910673i −0.615273 0.788314i \(-0.710954\pi\)
0.992486 0.122359i \(-0.0390459\pi\)
\(588\) 0 0
\(589\) 1.27964 + 6.43317i 0.0527265 + 0.265074i
\(590\) 0 0
\(591\) −24.8746 + 24.8746i −1.02320 + 1.02320i
\(592\) 0 0
\(593\) −7.01228 16.9291i −0.287960 0.695196i 0.712016 0.702163i \(-0.247782\pi\)
−0.999976 + 0.00696686i \(0.997782\pi\)
\(594\) 0 0
\(595\) 4.45635 + 5.23917i 0.182693 + 0.214785i
\(596\) 0 0
\(597\) 26.9536 11.1646i 1.10314 0.456935i
\(598\) 0 0
\(599\) −3.47924 3.47924i −0.142158 0.142158i 0.632446 0.774604i \(-0.282051\pi\)
−0.774604 + 0.632446i \(0.782051\pi\)
\(600\) 0 0
\(601\) −34.4497 + 6.85248i −1.40523 + 0.279518i −0.838733 0.544543i \(-0.816703\pi\)
−0.566501 + 0.824061i \(0.691703\pi\)
\(602\) 0 0
\(603\) 5.75335 + 2.38312i 0.234295 + 0.0970480i
\(604\) 0 0
\(605\) −16.6973 11.1568i −0.678844 0.453589i
\(606\) 0 0
\(607\) 7.98248 + 11.9466i 0.323999 + 0.484899i 0.957336 0.288977i \(-0.0933152\pi\)
−0.633337 + 0.773876i \(0.718315\pi\)
\(608\) 0 0
\(609\) 1.82843 9.19212i 0.0740916 0.372484i
\(610\) 0 0
\(611\) 45.4077 1.83700
\(612\) 0 0
\(613\) −28.3888 −1.14661 −0.573305 0.819342i \(-0.694339\pi\)
−0.573305 + 0.819342i \(0.694339\pi\)
\(614\) 0 0
\(615\) 0.352170 1.77048i 0.0142009 0.0713926i
\(616\) 0 0
\(617\) −10.8921 16.3011i −0.438498 0.656258i 0.544736 0.838608i \(-0.316630\pi\)
−0.983234 + 0.182349i \(0.941630\pi\)
\(618\) 0 0
\(619\) −9.04157 6.04138i −0.363411 0.242824i 0.360436 0.932784i \(-0.382628\pi\)
−0.723847 + 0.689960i \(0.757628\pi\)
\(620\) 0 0
\(621\) −11.9108 4.93362i −0.477965 0.197979i
\(622\) 0 0
\(623\) −22.2215 + 4.42014i −0.890287 + 0.177089i
\(624\) 0 0
\(625\) −10.9837 10.9837i −0.439347 0.439347i
\(626\) 0 0
\(627\) 12.0434 4.98852i 0.480965 0.199222i
\(628\) 0 0
\(629\) 34.7134 19.3482i 1.38412 0.771463i
\(630\) 0 0
\(631\) 17.1253 + 41.3441i 0.681747 + 1.64588i 0.760779 + 0.649011i \(0.224817\pi\)
−0.0790322 + 0.996872i \(0.525183\pi\)
\(632\) 0 0
\(633\) −15.8493 + 15.8493i −0.629952 + 0.629952i
\(634\) 0 0
\(635\) −2.26045 11.3641i −0.0897033 0.450969i
\(636\) 0 0
\(637\) −4.32983 + 10.4531i −0.171554 + 0.414169i
\(638\) 0 0
\(639\) −1.00378 + 1.50227i −0.0397091 + 0.0594288i
\(640\) 0 0
\(641\) 22.2117 14.8414i 0.877309 0.586199i −0.0333104 0.999445i \(-0.510605\pi\)
0.910619 + 0.413246i \(0.135605\pi\)
\(642\) 0 0
\(643\) −44.7690 8.90512i −1.76552 0.351184i −0.797743 0.602997i \(-0.793973\pi\)
−0.967776 + 0.251814i \(0.918973\pi\)
\(644\) 0 0
\(645\) 5.83102i 0.229596i
\(646\) 0 0
\(647\) 16.3446i 0.642573i −0.946982 0.321286i \(-0.895885\pi\)
0.946982 0.321286i \(-0.104115\pi\)
\(648\) 0 0
\(649\) −0.578998 0.115170i −0.0227277 0.00452081i
\(650\) 0 0
\(651\) 11.5706 7.73124i 0.453488 0.303011i
\(652\) 0 0
\(653\) −1.59099 + 2.38109i −0.0622604 + 0.0931793i −0.861294 0.508108i \(-0.830345\pi\)
0.799033 + 0.601287i \(0.205345\pi\)
\(654\) 0 0
\(655\) −4.31789 + 10.4243i −0.168714 + 0.407311i
\(656\) 0 0
\(657\) 1.14308 + 5.74664i 0.0445957 + 0.224198i
\(658\) 0 0
\(659\) 27.4487 27.4487i 1.06925 1.06925i 0.0718311 0.997417i \(-0.477116\pi\)
0.997417 0.0718311i \(-0.0228843\pi\)
\(660\) 0 0
\(661\) 2.69700 + 6.51114i 0.104901 + 0.253254i 0.967611 0.252445i \(-0.0812347\pi\)
−0.862710 + 0.505699i \(0.831235\pi\)
\(662\) 0 0
\(663\) 6.87596 24.1926i 0.267040 0.939563i
\(664\) 0 0
\(665\) 2.23917 0.927494i 0.0868313 0.0359667i
\(666\) 0 0
\(667\) −4.92856 4.92856i −0.190835 0.190835i
\(668\) 0 0
\(669\) −2.24452 + 0.446463i −0.0867781 + 0.0172612i
\(670\) 0 0
\(671\) 64.0269 + 26.5208i 2.47173 + 1.02383i
\(672\) 0 0
\(673\) −30.0915 20.1065i −1.15994 0.775048i −0.181871 0.983322i \(-0.558215\pi\)
−0.978071 + 0.208274i \(0.933215\pi\)
\(674\) 0 0
\(675\) −13.5599 20.2938i −0.521921 0.781111i
\(676\) 0 0
\(677\) 2.86033 14.3799i 0.109931 0.552663i −0.886087 0.463518i \(-0.846587\pi\)
0.996019 0.0891443i \(-0.0284132\pi\)
\(678\) 0 0
\(679\) −23.4107 −0.898420
\(680\) 0 0
\(681\) −5.79509 −0.222068
\(682\) 0 0
\(683\) 3.11209 15.6456i 0.119081 0.598660i −0.874452 0.485113i \(-0.838779\pi\)
0.993533 0.113548i \(-0.0362215\pi\)
\(684\) 0 0
\(685\) −7.14008 10.6859i −0.272808 0.408286i
\(686\) 0 0
\(687\) −21.7065 14.5038i −0.828153 0.553354i
\(688\) 0 0
\(689\) 9.76201 + 4.04356i 0.371903 + 0.154047i
\(690\) 0 0
\(691\) 2.10927 0.419559i 0.0802402 0.0159608i −0.154807 0.987945i \(-0.549476\pi\)
0.235047 + 0.971984i \(0.424476\pi\)
\(692\) 0 0
\(693\) 6.47274 + 6.47274i 0.245879 + 0.245879i
\(694\) 0 0
\(695\) 3.98607 1.65108i 0.151200 0.0626291i
\(696\) 0 0
\(697\) −0.704883 6.06069i −0.0266993 0.229565i
\(698\) 0 0
\(699\) −2.27294 5.48736i −0.0859705 0.207551i
\(700\) 0 0
\(701\) 4.67789 4.67789i 0.176682 0.176682i −0.613226 0.789908i \(-0.710128\pi\)
0.789908 + 0.613226i \(0.210128\pi\)
\(702\) 0 0
\(703\) −2.73201 13.7348i −0.103040 0.518016i
\(704\) 0 0
\(705\) 5.21696 12.5949i 0.196482 0.474350i
\(706\) 0 0
\(707\) −20.6863 + 30.9592i −0.777987 + 1.16434i
\(708\) 0 0
\(709\) −6.89041 + 4.60403i −0.258775 + 0.172908i −0.678190 0.734887i \(-0.737235\pi\)
0.419415 + 0.907795i \(0.362235\pi\)
\(710\) 0 0
\(711\) 0.488286 + 0.0971262i 0.0183122 + 0.00364252i
\(712\) 0 0
\(713\) 10.3491i 0.387577i
\(714\) 0 0
\(715\) 19.7293i 0.737833i
\(716\) 0 0
\(717\) −43.3186 8.61660i −1.61776 0.321793i
\(718\) 0 0
\(719\) 13.1429 8.78181i 0.490148 0.327506i −0.285815 0.958285i \(-0.592264\pi\)
0.775963 + 0.630779i \(0.217264\pi\)
\(720\) 0 0
\(721\) 4.06948 6.09040i 0.151555 0.226818i
\(722\) 0 0
\(723\) −11.1047 + 26.8092i −0.412990 + 0.997045i
\(724\) 0 0
\(725\) −2.57432 12.9420i −0.0956078 0.480653i
\(726\) 0 0
\(727\) 22.7318 22.7318i 0.843076 0.843076i −0.146182 0.989258i \(-0.546699\pi\)
0.989258 + 0.146182i \(0.0466985\pi\)
\(728\) 0 0
\(729\) −11.4651 27.6791i −0.424632 1.02515i
\(730\) 0 0
\(731\) 6.05247 + 18.7568i 0.223859 + 0.693745i
\(732\) 0 0
\(733\) 20.7512 8.59541i 0.766461 0.317479i 0.0350232 0.999387i \(-0.488849\pi\)
0.731438 + 0.681908i \(0.238849\pi\)
\(734\) 0 0
\(735\) 2.40196 + 2.40196i 0.0885975 + 0.0885975i
\(736\) 0 0
\(737\) 48.9272 9.73222i 1.80225 0.358491i
\(738\) 0 0
\(739\) 43.4870 + 18.0129i 1.59969 + 0.662615i 0.991372 0.131075i \(-0.0418428\pi\)
0.608322 + 0.793690i \(0.291843\pi\)
\(740\) 0 0
\(741\) −7.36889 4.92374i −0.270703 0.180878i
\(742\) 0 0
\(743\) −8.19762 12.2686i −0.300742 0.450092i 0.650064 0.759879i \(-0.274742\pi\)
−0.950806 + 0.309788i \(0.899742\pi\)
\(744\) 0 0
\(745\) −1.23218 + 6.19458i −0.0451435 + 0.226952i
\(746\) 0 0
\(747\) −0.196629 −0.00719428
\(748\) 0 0
\(749\) −30.1135 −1.10032
\(750\) 0 0
\(751\) −8.76165 + 44.0478i −0.319717 + 1.60733i 0.402337 + 0.915491i \(0.368198\pi\)
−0.722055 + 0.691836i \(0.756802\pi\)
\(752\) 0 0
\(753\) 7.91226 + 11.8415i 0.288339 + 0.431529i
\(754\) 0 0
\(755\) −0.415735 0.277785i −0.0151302 0.0101096i
\(756\) 0 0
\(757\) 25.2396 + 10.4546i 0.917349 + 0.379978i 0.790865 0.611990i \(-0.209631\pi\)
0.126484 + 0.991969i \(0.459631\pi\)
\(758\) 0 0
\(759\) −20.1724 + 4.01254i −0.732212 + 0.145646i
\(760\) 0 0
\(761\) −12.4584 12.4584i −0.451618 0.451618i 0.444273 0.895891i \(-0.353462\pi\)
−0.895891 + 0.444273i \(0.853462\pi\)
\(762\) 0 0
\(763\) 5.04165 2.08832i 0.182520 0.0756022i
\(764\) 0 0
\(765\) 1.95957 + 1.55125i 0.0708486 + 0.0560856i
\(766\) 0 0
\(767\) 0.153591 + 0.370802i 0.00554586 + 0.0133889i
\(768\) 0 0
\(769\) −10.5340 + 10.5340i −0.379867 + 0.379867i −0.871054 0.491187i \(-0.836563\pi\)
0.491187 + 0.871054i \(0.336563\pi\)
\(770\) 0 0
\(771\) −1.43824 7.23050i −0.0517968 0.260400i
\(772\) 0 0
\(773\) −6.70315 + 16.1828i −0.241096 + 0.582056i −0.997392 0.0721727i \(-0.977007\pi\)
0.756297 + 0.654229i \(0.227007\pi\)
\(774\) 0 0
\(775\) 10.8851 16.2908i 0.391006 0.585181i
\(776\) 0 0
\(777\) −24.7032 + 16.5061i −0.886221 + 0.592154i
\(778\) 0 0
\(779\) −2.10871 0.419449i −0.0755526 0.0150283i
\(780\) 0 0
\(781\) 14.4734i 0.517900i
\(782\) 0 0
\(783\) 17.1001i 0.611109i
\(784\) 0 0
\(785\) 4.55721 + 0.906486i 0.162654 + 0.0323539i
\(786\) 0 0
\(787\) 2.24549 1.50039i 0.0800431 0.0534831i −0.514905 0.857247i \(-0.672173\pi\)
0.594948 + 0.803764i \(0.297173\pi\)
\(788\) 0 0
\(789\) 22.3998 33.5237i 0.797455 1.19348i
\(790\) 0 0
\(791\) −11.6425 + 28.1076i −0.413961 + 0.999391i
\(792\) 0 0
\(793\) −9.19193 46.2110i −0.326415 1.64100i
\(794\) 0 0
\(795\) 2.24315 2.24315i 0.0795562 0.0795562i
\(796\) 0 0
\(797\) −9.37385 22.6305i −0.332039 0.801612i −0.998430 0.0560103i \(-0.982162\pi\)
0.666391 0.745602i \(-0.267838\pi\)
\(798\) 0 0
\(799\) 3.70835 45.9293i 0.131192 1.62486i
\(800\) 0 0
\(801\) −7.60607 + 3.15054i −0.268747 + 0.111319i
\(802\) 0 0
\(803\) 33.1891 + 33.1891i 1.17122 + 1.17122i
\(804\) 0 0
\(805\) −3.75057 + 0.746035i −0.132190 + 0.0262943i
\(806\) 0 0
\(807\) 4.33043 + 1.79372i 0.152438 + 0.0631420i
\(808\) 0 0
\(809\) −35.9588 24.0269i −1.26424 0.844740i −0.271203 0.962522i \(-0.587422\pi\)
−0.993039 + 0.117782i \(0.962422\pi\)
\(810\) 0 0
\(811\) −20.8025 31.1332i −0.730476 1.09323i −0.991777 0.127977i \(-0.959152\pi\)
0.261302 0.965257i \(-0.415848\pi\)
\(812\) 0 0
\(813\) 9.23238 46.4143i 0.323794 1.62782i
\(814\) 0 0
\(815\) 11.1780 0.391548
\(816\) 0 0
\(817\) 6.94499 0.242974
\(818\) 0 0
\(819\) 1.21412 6.10381i 0.0424249 0.213284i
\(820\) 0 0
\(821\) 24.0701 + 36.0235i 0.840054 + 1.25723i 0.964256 + 0.264972i \(0.0853628\pi\)
−0.124202 + 0.992257i \(0.539637\pi\)
\(822\) 0 0
\(823\) 32.7295 + 21.8692i 1.14088 + 0.762311i 0.974641 0.223775i \(-0.0718381\pi\)
0.166238 + 0.986086i \(0.446838\pi\)
\(824\) 0 0
\(825\) −35.9742 14.9010i −1.25246 0.518786i
\(826\) 0 0
\(827\) 27.5139 5.47285i 0.956751 0.190310i 0.308064 0.951365i \(-0.400319\pi\)
0.648686 + 0.761056i \(0.275319\pi\)
\(828\) 0 0
\(829\) −0.660040 0.660040i −0.0229241 0.0229241i 0.695552 0.718476i \(-0.255160\pi\)
−0.718476 + 0.695552i \(0.755160\pi\)
\(830\) 0 0
\(831\) 5.16846 2.14085i 0.179292 0.0742651i
\(832\) 0 0
\(833\) 10.2196 + 5.23325i 0.354088 + 0.181322i
\(834\) 0 0
\(835\) −3.96479 9.57185i −0.137207 0.331248i
\(836\) 0 0
\(837\) 17.9536 17.9536i 0.620569 0.620569i
\(838\) 0 0
\(839\) −3.38332 17.0091i −0.116805 0.587220i −0.994209 0.107467i \(-0.965726\pi\)
0.877403 0.479753i \(-0.159274\pi\)
\(840\) 0 0
\(841\) −7.55990 + 18.2512i −0.260686 + 0.629352i
\(842\) 0 0
\(843\) 5.81493 8.70266i 0.200277 0.299736i
\(844\) 0 0
\(845\) 2.37023 1.58374i 0.0815385 0.0544823i
\(846\) 0 0
\(847\) 49.7692 + 9.89972i 1.71009 + 0.340158i
\(848\) 0 0
\(849\) 21.4610i 0.736540i
\(850\) 0 0
\(851\) 22.0953i 0.757416i
\(852\) 0 0
\(853\) 8.62261 + 1.71514i 0.295232 + 0.0587254i 0.340484 0.940250i \(-0.389409\pi\)
−0.0452518 + 0.998976i \(0.514409\pi\)
\(854\) 0 0
\(855\) 0.732256 0.489278i 0.0250426 0.0167329i
\(856\) 0 0
\(857\) 20.1122 30.1000i 0.687018 1.02820i −0.309978 0.950744i \(-0.600322\pi\)
0.996996 0.0774517i \(-0.0246783\pi\)
\(858\) 0 0
\(859\) −1.48067 + 3.57466i −0.0505200 + 0.121966i −0.947125 0.320866i \(-0.896026\pi\)
0.896605 + 0.442832i \(0.146026\pi\)
\(860\) 0 0
\(861\) 0.889895 + 4.47380i 0.0303275 + 0.152467i
\(862\) 0 0
\(863\) 32.6793 32.6793i 1.11242 1.11242i 0.119594 0.992823i \(-0.461841\pi\)
0.992823 0.119594i \(-0.0381593\pi\)
\(864\) 0 0
\(865\) 2.69981 + 6.51793i 0.0917964 + 0.221616i
\(866\) 0 0
\(867\) −23.9090 8.93070i −0.811991 0.303303i
\(868\) 0 0
\(869\) 3.68457 1.52620i 0.124990 0.0517727i
\(870\) 0 0
\(871\) −23.9820 23.9820i −0.812598 0.812598i
\(872\) 0 0
\(873\) −8.34320 + 1.65957i −0.282375 + 0.0561678i
\(874\) 0 0
\(875\) −14.3945 5.96240i −0.486623 0.201566i
\(876\) 0 0
\(877\) 30.2817 + 20.2336i 1.02254 + 0.683240i 0.949396 0.314081i \(-0.101697\pi\)
0.0731447 + 0.997321i \(0.476697\pi\)
\(878\) 0 0
\(879\) 27.9472 + 41.8260i 0.942637 + 1.41076i
\(880\) 0 0
\(881\) −4.93397 + 24.8047i −0.166230 + 0.835693i 0.804209 + 0.594346i \(0.202589\pi\)
−0.970439 + 0.241347i \(0.922411\pi\)
\(882\) 0 0
\(883\) 14.0488 0.472780 0.236390 0.971658i \(-0.424036\pi\)
0.236390 + 0.971658i \(0.424036\pi\)
\(884\) 0 0
\(885\) 0.120497 0.00405045
\(886\) 0 0
\(887\) 5.67519 28.5311i 0.190554 0.957981i −0.760590 0.649233i \(-0.775090\pi\)
0.951144 0.308748i \(-0.0999100\pi\)
\(888\) 0 0
\(889\) 16.2661 + 24.3440i 0.545549 + 0.816471i
\(890\) 0 0
\(891\) −30.8348 20.6031i −1.03300 0.690231i
\(892\) 0 0
\(893\) −15.0010 6.21362i −0.501990 0.207931i
\(894\) 0 0
\(895\) 12.4987 2.48614i 0.417785 0.0831026i
\(896\) 0 0
\(897\) 9.88764 + 9.88764i 0.330139 + 0.330139i
\(898\) 0 0
\(899\) 12.6821 5.25310i 0.422972 0.175201i
\(900\) 0 0
\(901\) 4.88725 9.54392i 0.162818 0.317954i
\(902\) 0 0
\(903\) −5.63859 13.6128i −0.187640 0.453004i
\(904\) 0 0
\(905\) −10.5048 + 10.5048i −0.349192 + 0.349192i
\(906\) 0 0
\(907\) 0.902376 + 4.53655i 0.0299629 + 0.150634i 0.992871 0.119197i \(-0.0380321\pi\)
−0.962908 + 0.269831i \(0.913032\pi\)
\(908\) 0 0
\(909\) −5.17759 + 12.4998i −0.171730 + 0.414593i
\(910\) 0 0
\(911\) 2.26518 3.39008i 0.0750488 0.112318i −0.792047 0.610461i \(-0.790984\pi\)
0.867095 + 0.498142i \(0.165984\pi\)
\(912\) 0 0
\(913\) −1.30968 + 0.875099i −0.0433440 + 0.0289615i
\(914\) 0 0
\(915\) −13.8737 2.75966i −0.458652 0.0912315i
\(916\) 0 0
\(917\) 28.5113i 0.941528i
\(918\) 0 0
\(919\) 42.9256i 1.41598i −0.706220 0.707992i \(-0.749601\pi\)
0.706220 0.707992i \(-0.250399\pi\)
\(920\) 0 0
\(921\) 39.3093 + 7.81910i 1.29528 + 0.257648i
\(922\) 0 0
\(923\) 8.18166 5.46681i 0.269303 0.179942i
\(924\) 0 0
\(925\) −23.2397 + 34.7806i −0.764115 + 1.14358i
\(926\) 0 0
\(927\) 1.01855 2.45901i 0.0334537 0.0807644i
\(928\) 0 0
\(929\) −0.857745 4.31217i −0.0281417 0.141478i 0.964160 0.265321i \(-0.0854780\pi\)
−0.992302 + 0.123843i \(0.960478\pi\)
\(930\) 0 0
\(931\) 2.86083 2.86083i 0.0937600 0.0937600i
\(932\) 0 0
\(933\) 18.5506 + 44.7852i 0.607320 + 1.46620i
\(934\) 0 0
\(935\) 19.9559 + 1.61125i 0.652628 + 0.0526934i
\(936\) 0 0
\(937\) 4.62312 1.91496i 0.151031 0.0625590i −0.305888 0.952068i \(-0.598953\pi\)
0.456918 + 0.889509i \(0.348953\pi\)
\(938\) 0 0
\(939\) 16.3696 + 16.3696i 0.534202 + 0.534202i
\(940\) 0 0
\(941\) −26.2898 + 5.22937i −0.857023 + 0.170473i −0.603997 0.796987i \(-0.706426\pi\)
−0.253027 + 0.967459i \(0.581426\pi\)
\(942\) 0 0
\(943\) 3.13409 + 1.29818i 0.102060 + 0.0422746i
\(944\) 0 0
\(945\) −7.80071 5.21227i −0.253757 0.169555i
\(946\) 0 0
\(947\) 22.2935 + 33.3646i 0.724443 + 1.08420i 0.992671 + 0.120850i \(0.0385619\pi\)
−0.268228 + 0.963355i \(0.586438\pi\)
\(948\) 0 0
\(949\) 6.22544 31.2974i 0.202086 1.01596i
\(950\) 0 0
\(951\) 3.43023 0.111233
\(952\) 0 0
\(953\) −18.5020 −0.599338 −0.299669 0.954043i \(-0.596876\pi\)
−0.299669 + 0.954043i \(0.596876\pi\)
\(954\) 0 0
\(955\) −1.47727 + 7.42676i −0.0478035 + 0.240324i
\(956\) 0 0
\(957\) −15.1564 22.6832i −0.489937 0.733242i
\(958\) 0 0
\(959\) 27.0020 + 18.0422i 0.871941 + 0.582612i
\(960\) 0 0
\(961\) −9.80985 4.06337i −0.316447 0.131077i
\(962\) 0 0
\(963\) −10.7320 + 2.13473i −0.345834 + 0.0687906i
\(964\) 0 0
\(965\) 10.8693 + 10.8693i 0.349896 + 0.349896i
\(966\) 0 0
\(967\) −12.8978 + 5.34244i −0.414765 + 0.171801i −0.580300 0.814403i \(-0.697065\pi\)
0.165535 + 0.986204i \(0.447065\pi\)
\(968\) 0 0
\(969\) −5.58210 + 7.05143i −0.179323 + 0.226524i
\(970\) 0 0
\(971\) −1.61277 3.89357i −0.0517562 0.124951i 0.895887 0.444283i \(-0.146541\pi\)
−0.947643 + 0.319332i \(0.896541\pi\)
\(972\) 0 0
\(973\) −7.70904 + 7.70904i −0.247140 + 0.247140i
\(974\) 0 0
\(975\) 5.16458 + 25.9641i 0.165399 + 0.831517i
\(976\) 0 0
\(977\) 14.6299 35.3198i 0.468053 1.12998i −0.496959 0.867774i \(-0.665550\pi\)
0.965012 0.262206i \(-0.0844501\pi\)
\(978\) 0 0
\(979\) −36.6399 + 54.8355i −1.17102 + 1.75255i
\(980\) 0 0
\(981\) 1.64873 1.10164i 0.0526398 0.0351728i
\(982\) 0 0
\(983\) 18.9887 + 3.77709i 0.605645 + 0.120470i 0.488381 0.872630i \(-0.337588\pi\)
0.117264 + 0.993101i \(0.462588\pi\)
\(984\) 0 0
\(985\) 19.0382i 0.606607i
\(986\) 0 0
\(987\) 34.4480i 1.09649i
\(988\) 0 0
\(989\) −10.7473 2.13776i −0.341743 0.0679769i
\(990\) 0 0
\(991\) −1.77414 + 1.18544i −0.0563575 + 0.0376569i −0.583430 0.812164i \(-0.698290\pi\)
0.527072 + 0.849820i \(0.323290\pi\)
\(992\) 0 0
\(993\) −18.1926 + 27.2271i −0.577324 + 0.864026i
\(994\) 0 0
\(995\) 6.04222 14.5872i 0.191551 0.462446i
\(996\) 0 0
\(997\) 3.81274 + 19.1679i 0.120751 + 0.607055i 0.993012 + 0.118014i \(0.0376529\pi\)
−0.872261 + 0.489040i \(0.837347\pi\)
\(998\) 0 0
\(999\) −38.3309 + 38.3309i −1.21273 + 1.21273i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 544.2.bx.g.479.1 yes 8
4.3 odd 2 544.2.bx.a.479.1 yes 8
17.6 odd 16 544.2.bx.a.159.1 8
68.23 even 16 inner 544.2.bx.g.159.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
544.2.bx.a.159.1 8 17.6 odd 16
544.2.bx.a.479.1 yes 8 4.3 odd 2
544.2.bx.g.159.1 yes 8 68.23 even 16 inner
544.2.bx.g.479.1 yes 8 1.1 even 1 trivial