L(s) = 1 | + 2·2-s + 2·3-s + 3·4-s + 8·5-s + 4·6-s − 2·7-s + 4·8-s + 5·9-s + 16·10-s + 2·11-s + 6·12-s + 2·13-s − 4·14-s + 16·15-s + 4·16-s + 6·17-s + 10·18-s − 6·19-s + 24·20-s − 4·21-s + 4·22-s + 8·23-s + 8·24-s − 4·25-s + 4·26-s + 6·27-s − 6·28-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 1.15·3-s + 3/2·4-s + 3.57·5-s + 1.63·6-s − 0.755·7-s + 1.41·8-s + 5/3·9-s + 5.05·10-s + 0.603·11-s + 1.73·12-s + 0.554·13-s − 1.06·14-s + 4.13·15-s + 16-s + 1.45·17-s + 2.35·18-s − 1.37·19-s + 5.36·20-s − 0.872·21-s + 0.852·22-s + 1.66·23-s + 1.63·24-s − 4/5·25-s + 0.784·26-s + 1.15·27-s − 1.13·28-s + ⋯ |
Λ(s)=(=((3116)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((3116)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
103.1414557 |
L(21) |
≈ |
103.1414557 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1 |
good | 2 | 1−pT+T2+T4−p4T5+25T6−3pT7−3T8−3p2T9+25p2T10−p7T11+p4T12+p6T14−p8T15+p8T16 |
| 3 | 1−2T−T2+2pT3−4T4−4p2T5+65T6+20T7−113T8+20pT9+65p2T10−4p5T11−4p4T12+2p6T13−p6T14−2p7T15+p8T16 |
| 5 | (1−T+pT2)8 |
| 7 | 1+2T−9T2−30T3+36T4+156T5−135T6−324T7+1527T8−324pT9−135p2T10+156p3T11+36p4T12−30p5T13−9p6T14+2p7T15+p8T16 |
| 11 | 1−2T−T2−10T3−52T4−820T5+2241T6+1972T7+9183T8+1972pT9+2241p2T10−820p3T11−52p4T12−10p5T13−p6T14−2p7T15+p8T16 |
| 13 | 1−2T−15T2+42T3+84T4−996T5+1839T6+5964T7−35169T8+5964pT9+1839p2T10−996p3T11+84p4T12+42p5T13−15p6T14−2p7T15+p8T16 |
| 17 | 1−6T+T2+6pT3−324T4−84pT5+9215T6−1740T7−72793T8−1740pT9+9215p2T10−84p4T11−324p4T12+6p6T13+p6T14−6p7T15+p8T16 |
| 19 | 1+6T−9T2−210T3−28pT4−900T5−2151T6+42756T7+442783T8+42756pT9−2151p2T10−900p3T11−28p5T12−210p5T13−9p6T14+6p7T15+p8T16 |
| 23 | (1−4T−7T2+120T3−319T4+120pT5−7p2T6−4p3T7+p4T8)2 |
| 29 | 1−8T−2T2+312T3−1349T4−520T5+22492T6−95040T7+530997T8−95040pT9+22492p2T10−520p3T11−1349p4T12+312p5T13−2p6T14−8p7T15+p8T16 |
| 37 | (1−T+pT2)8 |
| 41 | 1+2T−7T2+46T3−1348T4+11740T5+53847T6−209308T7+2217735T8−209308pT9+53847p2T10+11740p3T11−1348p4T12+46p5T13−7p6T14+2p7T15+p8T16 |
| 43 | 1−2T+15T2−138T3−1236T4−6996T5−15471T6+315444T7+2085951T8+315444pT9−15471p2T10−6996p3T11−1236p4T12−138p5T13+15p6T14−2p7T15+p8T16 |
| 47 | 1+8T−14T2−360T3−989T4+35464T5+256420T6−291456T7−6813243T8−291456pT9+256420p2T10+35464p3T11−989p4T12−360p5T13−14p6T14+8p7T15+p8T16 |
| 53 | 1+6T−71T2−750T3+2196T4+15468T5−181225T6+62652T7+18517247T8+62652pT9−181225p2T10+15468p3T11+2196p4T12−750p5T13−71p6T14+6p7T15+p8T16 |
| 59 | 1−6T−41T2+6pT3−324T4−1092pT5+428921T6+1269852T7−16710673T8+1269852pT9+428921p2T10−1092p4T11−324p4T12+6p6T13−41p6T14−6p7T15+p8T16 |
| 61 | (1+114T2+p2T4)4 |
| 67 | (1+2T+117T2+2pT3+p2T4)4 |
| 71 | 1−14T+55T2+210T3−1820T4−72772T5+789433T6−40740T7−29229705T8−40740pT9+789433p2T10−72772p3T11−1820p4T12+210p5T13+55p6T14−14p7T15+p8T16 |
| 73 | 1+2T−135T2−402T3+12924T4+15516T5−1104681T6−336924T7+86270151T8−336924pT9−1104681p2T10+15516p3T11+12924p4T12−402p5T13−135p6T14+2p7T15+p8T16 |
| 79 | 1−22T+223T2−902T3−6364T4+127820T5−975103T6+4781260T7−33119273T8+4781260pT9−975103p2T10+127820p3T11−6364p4T12−902p5T13+223p6T14−22p7T15+p8T16 |
| 83 | 1−6T−89T2+786T3+2508T4−114396T5+594569T6+4068348T7−59039617T8+4068348pT9+594569p2T10−114396p3T11+2508p4T12+786p5T13−89p6T14−6p7T15+p8T16 |
| 89 | 1−8T−58T2+728T3−973T4−183880T5+1530828T6+5113024T7−89035515T8+5113024pT9+1530828p2T10−183880p3T11−973p4T12+728p5T13−58p6T14−8p7T15+p8T16 |
| 97 | 1+16T+6T2−2352T3−23709T4−154992T5−259380T6+19931520T7+366279717T8+19931520pT9−259380p2T10−154992p3T11−23709p4T12−2352p5T13+6p6T14+16p7T15+p8T16 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.32720161370068551670048824374, −4.08955010155712923063884171444, −3.98710575417456850733211323723, −3.85061750855607533508741577162, −3.79059463834889436695612548690, −3.60382032288679335875853609184, −3.59575494352327543846446183484, −3.56075395288620057252995660896, −3.23480233077716382685637102929, −2.92807483716033048219941176739, −2.81616345419647021664091606383, −2.81392280268649604270826936679, −2.62000813359039061467415106170, −2.45818847637520460292236849325, −2.38464662748497733841810032137, −2.18525098302005431291556920029, −2.03349697075436065779046871356, −1.90863529545816944647210107330, −1.81709846590302760976797560754, −1.63030233871540320771753823454, −1.40290572056942639005611905454, −1.20261886653715004192517510789, −1.19749023660935613233197011027, −0.57987589386918786278358559211, −0.56796364114756866712860295698,
0.56796364114756866712860295698, 0.57987589386918786278358559211, 1.19749023660935613233197011027, 1.20261886653715004192517510789, 1.40290572056942639005611905454, 1.63030233871540320771753823454, 1.81709846590302760976797560754, 1.90863529545816944647210107330, 2.03349697075436065779046871356, 2.18525098302005431291556920029, 2.38464662748497733841810032137, 2.45818847637520460292236849325, 2.62000813359039061467415106170, 2.81392280268649604270826936679, 2.81616345419647021664091606383, 2.92807483716033048219941176739, 3.23480233077716382685637102929, 3.56075395288620057252995660896, 3.59575494352327543846446183484, 3.60382032288679335875853609184, 3.79059463834889436695612548690, 3.85061750855607533508741577162, 3.98710575417456850733211323723, 4.08955010155712923063884171444, 4.32720161370068551670048824374
Plot not available for L-functions of degree greater than 10.