Properties

Label 16-31e16-1.1-c1e8-0-1
Degree 1616
Conductor 7.274×10237.274\times 10^{23}
Sign 11
Analytic cond. 1.20227×1071.20227\times 10^{7}
Root an. cond. 2.770132.77013
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 2·3-s + 3·4-s + 8·5-s − 4·6-s − 2·7-s + 4·8-s + 5·9-s + 16·10-s − 2·11-s − 6·12-s − 2·13-s − 4·14-s − 16·15-s + 4·16-s − 6·17-s + 10·18-s − 6·19-s + 24·20-s + 4·21-s − 4·22-s − 8·23-s − 8·24-s − 4·25-s − 4·26-s − 6·27-s − 6·28-s + ⋯
L(s)  = 1  + 1.41·2-s − 1.15·3-s + 3/2·4-s + 3.57·5-s − 1.63·6-s − 0.755·7-s + 1.41·8-s + 5/3·9-s + 5.05·10-s − 0.603·11-s − 1.73·12-s − 0.554·13-s − 1.06·14-s − 4.13·15-s + 16-s − 1.45·17-s + 2.35·18-s − 1.37·19-s + 5.36·20-s + 0.872·21-s − 0.852·22-s − 1.66·23-s − 1.63·24-s − 4/5·25-s − 0.784·26-s − 1.15·27-s − 1.13·28-s + ⋯

Functional equation

Λ(s)=((3116)s/2ΓC(s)8L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut &\left(31^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
Λ(s)=((3116)s/2ΓC(s+1/2)8L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(31^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 1616
Conductor: 311631^{16}
Sign: 11
Analytic conductor: 1.20227×1071.20227\times 10^{7}
Root analytic conductor: 2.770132.77013
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (16, 3116, ( :[1/2]8), 1)(16,\ 31^{16} ,\ ( \ : [1/2]^{8} ),\ 1 )

Particular Values

L(1)L(1) \approx 0.91637774440.9163777444
L(12)L(\frac12) \approx 0.91637774440.9163777444
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad31 1 1
good2 1pT+T2+T4p4T5+25T63pT73T83p2T9+25p2T10p7T11+p4T12+p6T14p8T15+p8T16 1 - p T + T^{2} + T^{4} - p^{4} T^{5} + 25 T^{6} - 3 p T^{7} - 3 T^{8} - 3 p^{2} T^{9} + 25 p^{2} T^{10} - p^{7} T^{11} + p^{4} T^{12} + p^{6} T^{14} - p^{8} T^{15} + p^{8} T^{16}
3 1+2TT22pT34T4+4p2T5+65T620T7113T820pT9+65p2T10+4p5T114p4T122p6T13p6T14+2p7T15+p8T16 1 + 2 T - T^{2} - 2 p T^{3} - 4 T^{4} + 4 p^{2} T^{5} + 65 T^{6} - 20 T^{7} - 113 T^{8} - 20 p T^{9} + 65 p^{2} T^{10} + 4 p^{5} T^{11} - 4 p^{4} T^{12} - 2 p^{6} T^{13} - p^{6} T^{14} + 2 p^{7} T^{15} + p^{8} T^{16}
5 (1T+pT2)8 ( 1 - T + p T^{2} )^{8}
7 1+2T9T230T3+36T4+156T5135T6324T7+1527T8324pT9135p2T10+156p3T11+36p4T1230p5T139p6T14+2p7T15+p8T16 1 + 2 T - 9 T^{2} - 30 T^{3} + 36 T^{4} + 156 T^{5} - 135 T^{6} - 324 T^{7} + 1527 T^{8} - 324 p T^{9} - 135 p^{2} T^{10} + 156 p^{3} T^{11} + 36 p^{4} T^{12} - 30 p^{5} T^{13} - 9 p^{6} T^{14} + 2 p^{7} T^{15} + p^{8} T^{16}
11 1+2TT2+10T352T4+820T5+2241T61972T7+9183T81972pT9+2241p2T10+820p3T1152p4T12+10p5T13p6T14+2p7T15+p8T16 1 + 2 T - T^{2} + 10 T^{3} - 52 T^{4} + 820 T^{5} + 2241 T^{6} - 1972 T^{7} + 9183 T^{8} - 1972 p T^{9} + 2241 p^{2} T^{10} + 820 p^{3} T^{11} - 52 p^{4} T^{12} + 10 p^{5} T^{13} - p^{6} T^{14} + 2 p^{7} T^{15} + p^{8} T^{16}
13 1+2T15T242T3+84T4+996T5+1839T65964T735169T85964pT9+1839p2T10+996p3T11+84p4T1242p5T1315p6T14+2p7T15+p8T16 1 + 2 T - 15 T^{2} - 42 T^{3} + 84 T^{4} + 996 T^{5} + 1839 T^{6} - 5964 T^{7} - 35169 T^{8} - 5964 p T^{9} + 1839 p^{2} T^{10} + 996 p^{3} T^{11} + 84 p^{4} T^{12} - 42 p^{5} T^{13} - 15 p^{6} T^{14} + 2 p^{7} T^{15} + p^{8} T^{16}
17 1+6T+T26pT3324T4+84pT5+9215T6+1740T772793T8+1740pT9+9215p2T10+84p4T11324p4T126p6T13+p6T14+6p7T15+p8T16 1 + 6 T + T^{2} - 6 p T^{3} - 324 T^{4} + 84 p T^{5} + 9215 T^{6} + 1740 T^{7} - 72793 T^{8} + 1740 p T^{9} + 9215 p^{2} T^{10} + 84 p^{4} T^{11} - 324 p^{4} T^{12} - 6 p^{6} T^{13} + p^{6} T^{14} + 6 p^{7} T^{15} + p^{8} T^{16}
19 1+6T9T2210T328pT4900T52151T6+42756T7+442783T8+42756pT92151p2T10900p3T1128p5T12210p5T139p6T14+6p7T15+p8T16 1 + 6 T - 9 T^{2} - 210 T^{3} - 28 p T^{4} - 900 T^{5} - 2151 T^{6} + 42756 T^{7} + 442783 T^{8} + 42756 p T^{9} - 2151 p^{2} T^{10} - 900 p^{3} T^{11} - 28 p^{5} T^{12} - 210 p^{5} T^{13} - 9 p^{6} T^{14} + 6 p^{7} T^{15} + p^{8} T^{16}
23 (1+4T7T2120T3319T4120pT57p2T6+4p3T7+p4T8)2 ( 1 + 4 T - 7 T^{2} - 120 T^{3} - 319 T^{4} - 120 p T^{5} - 7 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} )^{2}
29 1+8T2T2312T31349T4+520T5+22492T6+95040T7+530997T8+95040pT9+22492p2T10+520p3T111349p4T12312p5T132p6T14+8p7T15+p8T16 1 + 8 T - 2 T^{2} - 312 T^{3} - 1349 T^{4} + 520 T^{5} + 22492 T^{6} + 95040 T^{7} + 530997 T^{8} + 95040 p T^{9} + 22492 p^{2} T^{10} + 520 p^{3} T^{11} - 1349 p^{4} T^{12} - 312 p^{5} T^{13} - 2 p^{6} T^{14} + 8 p^{7} T^{15} + p^{8} T^{16}
37 (1+T+pT2)8 ( 1 + T + p T^{2} )^{8}
41 1+2T7T2+46T31348T4+11740T5+53847T6209308T7+2217735T8209308pT9+53847p2T10+11740p3T111348p4T12+46p5T137p6T14+2p7T15+p8T16 1 + 2 T - 7 T^{2} + 46 T^{3} - 1348 T^{4} + 11740 T^{5} + 53847 T^{6} - 209308 T^{7} + 2217735 T^{8} - 209308 p T^{9} + 53847 p^{2} T^{10} + 11740 p^{3} T^{11} - 1348 p^{4} T^{12} + 46 p^{5} T^{13} - 7 p^{6} T^{14} + 2 p^{7} T^{15} + p^{8} T^{16}
43 1+2T+15T2+138T31236T4+6996T515471T6315444T7+2085951T8315444pT915471p2T10+6996p3T111236p4T12+138p5T13+15p6T14+2p7T15+p8T16 1 + 2 T + 15 T^{2} + 138 T^{3} - 1236 T^{4} + 6996 T^{5} - 15471 T^{6} - 315444 T^{7} + 2085951 T^{8} - 315444 p T^{9} - 15471 p^{2} T^{10} + 6996 p^{3} T^{11} - 1236 p^{4} T^{12} + 138 p^{5} T^{13} + 15 p^{6} T^{14} + 2 p^{7} T^{15} + p^{8} T^{16}
47 1+8T14T2360T3989T4+35464T5+256420T6291456T76813243T8291456pT9+256420p2T10+35464p3T11989p4T12360p5T1314p6T14+8p7T15+p8T16 1 + 8 T - 14 T^{2} - 360 T^{3} - 989 T^{4} + 35464 T^{5} + 256420 T^{6} - 291456 T^{7} - 6813243 T^{8} - 291456 p T^{9} + 256420 p^{2} T^{10} + 35464 p^{3} T^{11} - 989 p^{4} T^{12} - 360 p^{5} T^{13} - 14 p^{6} T^{14} + 8 p^{7} T^{15} + p^{8} T^{16}
53 16T71T2+750T3+2196T415468T5181225T662652T7+18517247T862652pT9181225p2T1015468p3T11+2196p4T12+750p5T1371p6T146p7T15+p8T16 1 - 6 T - 71 T^{2} + 750 T^{3} + 2196 T^{4} - 15468 T^{5} - 181225 T^{6} - 62652 T^{7} + 18517247 T^{8} - 62652 p T^{9} - 181225 p^{2} T^{10} - 15468 p^{3} T^{11} + 2196 p^{4} T^{12} + 750 p^{5} T^{13} - 71 p^{6} T^{14} - 6 p^{7} T^{15} + p^{8} T^{16}
59 16T41T2+6pT3324T41092pT5+428921T6+1269852T716710673T8+1269852pT9+428921p2T101092p4T11324p4T12+6p6T1341p6T146p7T15+p8T16 1 - 6 T - 41 T^{2} + 6 p T^{3} - 324 T^{4} - 1092 p T^{5} + 428921 T^{6} + 1269852 T^{7} - 16710673 T^{8} + 1269852 p T^{9} + 428921 p^{2} T^{10} - 1092 p^{4} T^{11} - 324 p^{4} T^{12} + 6 p^{6} T^{13} - 41 p^{6} T^{14} - 6 p^{7} T^{15} + p^{8} T^{16}
61 (1+114T2+p2T4)4 ( 1 + 114 T^{2} + p^{2} T^{4} )^{4}
67 (1+2T+117T2+2pT3+p2T4)4 ( 1 + 2 T + 117 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{4}
71 114T+55T2+210T31820T472772T5+789433T640740T729229705T840740pT9+789433p2T1072772p3T111820p4T12+210p5T13+55p6T1414p7T15+p8T16 1 - 14 T + 55 T^{2} + 210 T^{3} - 1820 T^{4} - 72772 T^{5} + 789433 T^{6} - 40740 T^{7} - 29229705 T^{8} - 40740 p T^{9} + 789433 p^{2} T^{10} - 72772 p^{3} T^{11} - 1820 p^{4} T^{12} + 210 p^{5} T^{13} + 55 p^{6} T^{14} - 14 p^{7} T^{15} + p^{8} T^{16}
73 12T135T2+402T3+12924T415516T51104681T6+336924T7+86270151T8+336924pT91104681p2T1015516p3T11+12924p4T12+402p5T13135p6T142p7T15+p8T16 1 - 2 T - 135 T^{2} + 402 T^{3} + 12924 T^{4} - 15516 T^{5} - 1104681 T^{6} + 336924 T^{7} + 86270151 T^{8} + 336924 p T^{9} - 1104681 p^{2} T^{10} - 15516 p^{3} T^{11} + 12924 p^{4} T^{12} + 402 p^{5} T^{13} - 135 p^{6} T^{14} - 2 p^{7} T^{15} + p^{8} T^{16}
79 1+22T+223T2+902T36364T4127820T5975103T64781260T733119273T84781260pT9975103p2T10127820p3T116364p4T12+902p5T13+223p6T14+22p7T15+p8T16 1 + 22 T + 223 T^{2} + 902 T^{3} - 6364 T^{4} - 127820 T^{5} - 975103 T^{6} - 4781260 T^{7} - 33119273 T^{8} - 4781260 p T^{9} - 975103 p^{2} T^{10} - 127820 p^{3} T^{11} - 6364 p^{4} T^{12} + 902 p^{5} T^{13} + 223 p^{6} T^{14} + 22 p^{7} T^{15} + p^{8} T^{16}
83 1+6T89T2786T3+2508T4+114396T5+594569T64068348T759039617T84068348pT9+594569p2T10+114396p3T11+2508p4T12786p5T1389p6T14+6p7T15+p8T16 1 + 6 T - 89 T^{2} - 786 T^{3} + 2508 T^{4} + 114396 T^{5} + 594569 T^{6} - 4068348 T^{7} - 59039617 T^{8} - 4068348 p T^{9} + 594569 p^{2} T^{10} + 114396 p^{3} T^{11} + 2508 p^{4} T^{12} - 786 p^{5} T^{13} - 89 p^{6} T^{14} + 6 p^{7} T^{15} + p^{8} T^{16}
89 1+8T58T2728T3973T4+183880T5+1530828T65113024T789035515T85113024pT9+1530828p2T10+183880p3T11973p4T12728p5T1358p6T14+8p7T15+p8T16 1 + 8 T - 58 T^{2} - 728 T^{3} - 973 T^{4} + 183880 T^{5} + 1530828 T^{6} - 5113024 T^{7} - 89035515 T^{8} - 5113024 p T^{9} + 1530828 p^{2} T^{10} + 183880 p^{3} T^{11} - 973 p^{4} T^{12} - 728 p^{5} T^{13} - 58 p^{6} T^{14} + 8 p^{7} T^{15} + p^{8} T^{16}
97 1+16T+6T22352T323709T4154992T5259380T6+19931520T7+366279717T8+19931520pT9259380p2T10154992p3T1123709p4T122352p5T13+6p6T14+16p7T15+p8T16 1 + 16 T + 6 T^{2} - 2352 T^{3} - 23709 T^{4} - 154992 T^{5} - 259380 T^{6} + 19931520 T^{7} + 366279717 T^{8} + 19931520 p T^{9} - 259380 p^{2} T^{10} - 154992 p^{3} T^{11} - 23709 p^{4} T^{12} - 2352 p^{5} T^{13} + 6 p^{6} T^{14} + 16 p^{7} T^{15} + p^{8} T^{16}
show more
show less
   L(s)=p j=116(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−4.35796226171341044327663549902, −4.14788155802545182707558147771, −4.02364988197992490867794547603, −3.96343562414858544794805002969, −3.86417833872985660477945235632, −3.83929580130220073589804698168, −3.78738520797133276492607401181, −3.32752993579582653685878773543, −3.26912413271597384975892766400, −2.93664624550242929592999052010, −2.91045123429347156003971823042, −2.77818011815767627582475851594, −2.38779384657354344961201066707, −2.33920794356340236606440686716, −2.27217038297573760227989382913, −2.27064705210076804052635103640, −1.97528934845772330902290957294, −1.95791126517290227916977239341, −1.76973640119156840354323532387, −1.58562171812125841949779020464, −1.57252130922744678677997649984, −1.26904479384264766825004381611, −0.926999746360359762691088287768, −0.28218391925381551714308506094, −0.12872691484090804017722086150, 0.12872691484090804017722086150, 0.28218391925381551714308506094, 0.926999746360359762691088287768, 1.26904479384264766825004381611, 1.57252130922744678677997649984, 1.58562171812125841949779020464, 1.76973640119156840354323532387, 1.95791126517290227916977239341, 1.97528934845772330902290957294, 2.27064705210076804052635103640, 2.27217038297573760227989382913, 2.33920794356340236606440686716, 2.38779384657354344961201066707, 2.77818011815767627582475851594, 2.91045123429347156003971823042, 2.93664624550242929592999052010, 3.26912413271597384975892766400, 3.32752993579582653685878773543, 3.78738520797133276492607401181, 3.83929580130220073589804698168, 3.86417833872985660477945235632, 3.96343562414858544794805002969, 4.02364988197992490867794547603, 4.14788155802545182707558147771, 4.35796226171341044327663549902

Graph of the ZZ-function along the critical line

Plot not available for L-functions of degree greater than 10.