Properties

Label 16-2400e8-1.1-c2e8-0-9
Degree $16$
Conductor $1.101\times 10^{27}$
Sign $1$
Analytic cond. $3.34480\times 10^{14}$
Root an. cond. $8.08673$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·9-s + 64·11-s + 64·19-s + 80·41-s − 152·49-s − 256·59-s + 90·81-s + 400·89-s − 768·99-s + 1.33e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 584·169-s − 768·171-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯
L(s)  = 1  − 4/3·9-s + 5.81·11-s + 3.36·19-s + 1.95·41-s − 3.10·49-s − 4.33·59-s + 10/9·81-s + 4.49·89-s − 7.75·99-s + 11.0·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 3.45·169-s − 4.49·171-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 3^{8} \cdot 5^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 3^{8} \cdot 5^{16}\right)^{s/2} \, \Gamma_{\C}(s+1)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{40} \cdot 3^{8} \cdot 5^{16}\)
Sign: $1$
Analytic conductor: \(3.34480\times 10^{14}\)
Root analytic conductor: \(8.08673\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{40} \cdot 3^{8} \cdot 5^{16} ,\ ( \ : [1]^{8} ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(8.700590711\)
\(L(\frac12)\) \(\approx\) \(8.700590711\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( ( 1 + p T^{2} )^{4} \)
5 \( 1 \)
good7 \( ( 1 + 76 T^{2} + 3174 T^{4} + 76 p^{4} T^{6} + p^{8} T^{8} )^{2} \)
11 \( ( 1 - 8 T + p^{2} T^{2} )^{8} \)
13 \( ( 1 + 292 T^{2} + 75366 T^{4} + 292 p^{4} T^{6} + p^{8} T^{8} )^{2} \)
17 \( ( 1 - 764 T^{2} + 309894 T^{4} - 764 p^{4} T^{6} + p^{8} T^{8} )^{2} \)
19 \( ( 1 - 16 T + 738 T^{2} - 16 p^{2} T^{3} + p^{4} T^{4} )^{4} \)
23 \( ( 1 + 1636 T^{2} + 1179654 T^{4} + 1636 p^{4} T^{6} + p^{8} T^{8} )^{2} \)
29 \( ( 1 - 1756 T^{2} + 1539558 T^{4} - 1756 p^{4} T^{6} + p^{8} T^{8} )^{2} \)
31 \( ( 1 - 460 T^{2} - 683610 T^{4} - 460 p^{4} T^{6} + p^{8} T^{8} )^{2} \)
37 \( ( 1 + 4612 T^{2} + 8955366 T^{4} + 4612 p^{4} T^{6} + p^{8} T^{8} )^{2} \)
41 \( ( 1 - 20 T + 1734 T^{2} - 20 p^{2} T^{3} + p^{4} T^{4} )^{4} \)
43 \( ( 1 - 6404 T^{2} + 16979814 T^{4} - 6404 p^{4} T^{6} + p^{8} T^{8} )^{2} \)
47 \( ( 1 + 5284 T^{2} + 13593798 T^{4} + 5284 p^{4} T^{6} + p^{8} T^{8} )^{2} \)
53 \( ( 1 + 9436 T^{2} + 38033574 T^{4} + 9436 p^{4} T^{6} + p^{8} T^{8} )^{2} \)
59 \( ( 1 + 64 T + 7554 T^{2} + 64 p^{2} T^{3} + p^{4} T^{4} )^{4} \)
61 \( ( 1 - 11332 T^{2} + 56649510 T^{4} - 11332 p^{4} T^{6} + p^{8} T^{8} )^{2} \)
67 \( ( 1 - 8900 T^{2} + 53026854 T^{4} - 8900 p^{4} T^{6} + p^{8} T^{8} )^{2} \)
71 \( ( 1 - 11236 T^{2} + 75307398 T^{4} - 11236 p^{4} T^{6} + p^{8} T^{8} )^{2} \)
73 \( ( 1 - 10172 T^{2} + 51943878 T^{4} - 10172 p^{4} T^{6} + p^{8} T^{8} )^{2} \)
79 \( ( 1 - 17548 T^{2} + 151931046 T^{4} - 17548 p^{4} T^{6} + p^{8} T^{8} )^{2} \)
83 \( ( 1 - 22820 T^{2} + 220189542 T^{4} - 22820 p^{4} T^{6} + p^{8} T^{8} )^{2} \)
89 \( ( 1 - 100 T + 11430 T^{2} - 100 p^{2} T^{3} + p^{4} T^{4} )^{4} \)
97 \( ( 1 - 23420 T^{2} + 308763654 T^{4} - 23420 p^{4} T^{6} + p^{8} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.54054929815498144738713041560, −3.53245166145673458358494026631, −3.21159018899480398394511886830, −3.13455609734993997479779468836, −3.08818675309701973478219427254, −2.92168988640578355201725307996, −2.88310892130008498637532689670, −2.84672458428972943285496401596, −2.63342040935333157893365804560, −2.58827892772645941084525144585, −2.21380588424890074672760445386, −1.96258087841890077337940795569, −1.87298695247239732650182061164, −1.80984894778635791180269131987, −1.73165533471923084283143840118, −1.59019475405075706051009479283, −1.42614596073269688207839314089, −1.16187847147120244691358492150, −1.07941816437746383630450164162, −1.07782830106705837282122189406, −1.05798831248922044814100843820, −0.66830002854081748297281756899, −0.64670760634583276977518631817, −0.24647745372705405613877797920, −0.14405874474081469418370575862, 0.14405874474081469418370575862, 0.24647745372705405613877797920, 0.64670760634583276977518631817, 0.66830002854081748297281756899, 1.05798831248922044814100843820, 1.07782830106705837282122189406, 1.07941816437746383630450164162, 1.16187847147120244691358492150, 1.42614596073269688207839314089, 1.59019475405075706051009479283, 1.73165533471923084283143840118, 1.80984894778635791180269131987, 1.87298695247239732650182061164, 1.96258087841890077337940795569, 2.21380588424890074672760445386, 2.58827892772645941084525144585, 2.63342040935333157893365804560, 2.84672458428972943285496401596, 2.88310892130008498637532689670, 2.92168988640578355201725307996, 3.08818675309701973478219427254, 3.13455609734993997479779468836, 3.21159018899480398394511886830, 3.53245166145673458358494026631, 3.54054929815498144738713041560

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.