Properties

Label 2400.3.p.a.1999.8
Level $2400$
Weight $3$
Character 2400.1999
Analytic conductor $65.395$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2400,3,Mod(1999,2400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2400.1999"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2400.p (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-24,0,64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(65.3952634465\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.22581504.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 2x^{5} - 11x^{4} + 4x^{3} + 20x^{2} - 32x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{31}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1999.8
Root \(1.40994 - 0.109843i\) of defining polynomial
Character \(\chi\) \(=\) 2400.1999
Dual form 2400.3.p.a.1999.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205i q^{3} +10.7436 q^{7} -3.00000 q^{9} +8.00000 q^{11} -15.7298 q^{13} -15.8564i q^{17} +1.07180 q^{19} +18.6085i q^{21} +21.4873 q^{23} -5.19615i q^{27} -40.0958i q^{29} -9.20092i q^{31} +13.8564i q^{33} +9.97227 q^{37} -27.2448i q^{39} +51.5692 q^{41} -12.7846i q^{43} +1.54272 q^{47} +66.4256 q^{49} +27.4641 q^{51} -28.5808 q^{53} +1.85641i q^{57} -11.2154 q^{59} -1.54272i q^{61} -32.2309 q^{63} +43.2154i q^{67} +37.2170i q^{69} -84.4063i q^{71} -105.426i q^{73} +85.9491 q^{77} -73.6627i q^{79} +9.00000 q^{81} +12.2872i q^{83} +69.4479 q^{87} -33.1384 q^{89} -168.995 q^{91} +15.9365 q^{93} -69.1384i q^{97} -24.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 24 q^{9} + 64 q^{11} + 64 q^{19} + 80 q^{41} + 88 q^{49} + 192 q^{51} - 256 q^{59} + 72 q^{81} + 400 q^{89} - 576 q^{91} - 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2400\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1601\) \(1951\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 10.7436 1.53480 0.767402 0.641166i \(-0.221549\pi\)
0.767402 + 0.641166i \(0.221549\pi\)
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) 8.00000 0.727273 0.363636 0.931541i \(-0.381535\pi\)
0.363636 + 0.931541i \(0.381535\pi\)
\(12\) 0 0
\(13\) −15.7298 −1.20998 −0.604991 0.796232i \(-0.706823\pi\)
−0.604991 + 0.796232i \(0.706823\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 15.8564i − 0.932730i −0.884592 0.466365i \(-0.845563\pi\)
0.884592 0.466365i \(-0.154437\pi\)
\(18\) 0 0
\(19\) 1.07180 0.0564104 0.0282052 0.999602i \(-0.491021\pi\)
0.0282052 + 0.999602i \(0.491021\pi\)
\(20\) 0 0
\(21\) 18.6085i 0.886120i
\(22\) 0 0
\(23\) 21.4873 0.934229 0.467114 0.884197i \(-0.345294\pi\)
0.467114 + 0.884197i \(0.345294\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 5.19615i − 0.192450i
\(28\) 0 0
\(29\) − 40.0958i − 1.38261i −0.722562 0.691307i \(-0.757035\pi\)
0.722562 0.691307i \(-0.242965\pi\)
\(30\) 0 0
\(31\) − 9.20092i − 0.296804i −0.988927 0.148402i \(-0.952587\pi\)
0.988927 0.148402i \(-0.0474129\pi\)
\(32\) 0 0
\(33\) 13.8564i 0.419891i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.97227 0.269521 0.134760 0.990878i \(-0.456974\pi\)
0.134760 + 0.990878i \(0.456974\pi\)
\(38\) 0 0
\(39\) − 27.2448i − 0.698584i
\(40\) 0 0
\(41\) 51.5692 1.25779 0.628893 0.777492i \(-0.283508\pi\)
0.628893 + 0.777492i \(0.283508\pi\)
\(42\) 0 0
\(43\) − 12.7846i − 0.297317i −0.988889 0.148658i \(-0.952505\pi\)
0.988889 0.148658i \(-0.0474954\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.54272 0.0328237 0.0164119 0.999865i \(-0.494776\pi\)
0.0164119 + 0.999865i \(0.494776\pi\)
\(48\) 0 0
\(49\) 66.4256 1.35563
\(50\) 0 0
\(51\) 27.4641 0.538512
\(52\) 0 0
\(53\) −28.5808 −0.539260 −0.269630 0.962964i \(-0.586901\pi\)
−0.269630 + 0.962964i \(0.586901\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.85641i 0.0325685i
\(58\) 0 0
\(59\) −11.2154 −0.190091 −0.0950457 0.995473i \(-0.530300\pi\)
−0.0950457 + 0.995473i \(0.530300\pi\)
\(60\) 0 0
\(61\) − 1.54272i − 0.0252904i −0.999920 0.0126452i \(-0.995975\pi\)
0.999920 0.0126452i \(-0.00402520\pi\)
\(62\) 0 0
\(63\) −32.2309 −0.511602
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 43.2154i 0.645006i 0.946568 + 0.322503i \(0.104524\pi\)
−0.946568 + 0.322503i \(0.895476\pi\)
\(68\) 0 0
\(69\) 37.2170i 0.539377i
\(70\) 0 0
\(71\) − 84.4063i − 1.18882i −0.804162 0.594411i \(-0.797385\pi\)
0.804162 0.594411i \(-0.202615\pi\)
\(72\) 0 0
\(73\) − 105.426i − 1.44419i −0.691796 0.722093i \(-0.743180\pi\)
0.691796 0.722093i \(-0.256820\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 85.9491 1.11622
\(78\) 0 0
\(79\) − 73.6627i − 0.932439i −0.884669 0.466220i \(-0.845616\pi\)
0.884669 0.466220i \(-0.154384\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 12.2872i 0.148038i 0.997257 + 0.0740192i \(0.0235826\pi\)
−0.997257 + 0.0740192i \(0.976417\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 69.4479 0.798252
\(88\) 0 0
\(89\) −33.1384 −0.372342 −0.186171 0.982517i \(-0.559608\pi\)
−0.186171 + 0.982517i \(0.559608\pi\)
\(90\) 0 0
\(91\) −168.995 −1.85709
\(92\) 0 0
\(93\) 15.9365 0.171360
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 69.1384i − 0.712767i −0.934340 0.356384i \(-0.884010\pi\)
0.934340 0.356384i \(-0.115990\pi\)
\(98\) 0 0
\(99\) −24.0000 −0.242424
\(100\) 0 0
\(101\) 97.2574i 0.962944i 0.876461 + 0.481472i \(0.159898\pi\)
−0.876461 + 0.481472i \(0.840102\pi\)
\(102\) 0 0
\(103\) 139.667 1.35599 0.677996 0.735065i \(-0.262849\pi\)
0.677996 + 0.735065i \(0.262849\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 197.779i 1.84841i 0.381901 + 0.924203i \(0.375269\pi\)
−0.381901 + 0.924203i \(0.624731\pi\)
\(108\) 0 0
\(109\) − 190.713i − 1.74966i −0.484427 0.874832i \(-0.660972\pi\)
0.484427 0.874832i \(-0.339028\pi\)
\(110\) 0 0
\(111\) 17.2725i 0.155608i
\(112\) 0 0
\(113\) 113.713i 1.00631i 0.864197 + 0.503154i \(0.167827\pi\)
−0.864197 + 0.503154i \(0.832173\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 47.1893 0.403327
\(118\) 0 0
\(119\) − 170.355i − 1.43156i
\(120\) 0 0
\(121\) −57.0000 −0.471074
\(122\) 0 0
\(123\) 89.3205i 0.726183i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 36.8590 0.290229 0.145114 0.989415i \(-0.453645\pi\)
0.145114 + 0.989415i \(0.453645\pi\)
\(128\) 0 0
\(129\) 22.1436 0.171656
\(130\) 0 0
\(131\) −194.641 −1.48581 −0.742905 0.669397i \(-0.766552\pi\)
−0.742905 + 0.669397i \(0.766552\pi\)
\(132\) 0 0
\(133\) 11.5150 0.0865789
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 16.4308i 0.119933i 0.998200 + 0.0599664i \(0.0190993\pi\)
−0.998200 + 0.0599664i \(0.980901\pi\)
\(138\) 0 0
\(139\) −113.492 −0.816491 −0.408246 0.912872i \(-0.633859\pi\)
−0.408246 + 0.912872i \(0.633859\pi\)
\(140\) 0 0
\(141\) 2.67206i 0.0189508i
\(142\) 0 0
\(143\) −125.838 −0.879987
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 115.053i 0.782670i
\(148\) 0 0
\(149\) − 31.6662i − 0.212525i −0.994338 0.106262i \(-0.966112\pi\)
0.994338 0.106262i \(-0.0338884\pi\)
\(150\) 0 0
\(151\) − 90.5218i − 0.599482i −0.954021 0.299741i \(-0.903100\pi\)
0.954021 0.299741i \(-0.0969003\pi\)
\(152\) 0 0
\(153\) 47.5692i 0.310910i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 231.016 1.47144 0.735719 0.677287i \(-0.236844\pi\)
0.735719 + 0.677287i \(0.236844\pi\)
\(158\) 0 0
\(159\) − 49.5034i − 0.311342i
\(160\) 0 0
\(161\) 230.851 1.43386
\(162\) 0 0
\(163\) 22.3538i 0.137140i 0.997646 + 0.0685700i \(0.0218437\pi\)
−0.997646 + 0.0685700i \(0.978156\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 221.044 1.32361 0.661807 0.749674i \(-0.269790\pi\)
0.661807 + 0.749674i \(0.269790\pi\)
\(168\) 0 0
\(169\) 78.4256 0.464057
\(170\) 0 0
\(171\) −3.21539 −0.0188035
\(172\) 0 0
\(173\) 231.525 1.33830 0.669148 0.743130i \(-0.266659\pi\)
0.669148 + 0.743130i \(0.266659\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 19.4256i − 0.109749i
\(178\) 0 0
\(179\) 193.646 1.08182 0.540911 0.841080i \(-0.318080\pi\)
0.540911 + 0.841080i \(0.318080\pi\)
\(180\) 0 0
\(181\) − 270.492i − 1.49443i −0.664583 0.747214i \(-0.731391\pi\)
0.664583 0.747214i \(-0.268609\pi\)
\(182\) 0 0
\(183\) 2.67206 0.0146014
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 126.851i − 0.678349i
\(188\) 0 0
\(189\) − 55.8255i − 0.295373i
\(190\) 0 0
\(191\) 311.510i 1.63094i 0.578798 + 0.815471i \(0.303522\pi\)
−0.578798 + 0.815471i \(0.696478\pi\)
\(192\) 0 0
\(193\) − 48.2769i − 0.250139i −0.992148 0.125070i \(-0.960085\pi\)
0.992148 0.125070i \(-0.0399154\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 251.883 1.27859 0.639297 0.768960i \(-0.279225\pi\)
0.639297 + 0.768960i \(0.279225\pi\)
\(198\) 0 0
\(199\) 72.1200i 0.362412i 0.983445 + 0.181206i \(0.0580001\pi\)
−0.983445 + 0.181206i \(0.942000\pi\)
\(200\) 0 0
\(201\) −74.8513 −0.372394
\(202\) 0 0
\(203\) − 430.774i − 2.12204i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −64.4618 −0.311410
\(208\) 0 0
\(209\) 8.57437 0.0410257
\(210\) 0 0
\(211\) 264.918 1.25554 0.627768 0.778401i \(-0.283969\pi\)
0.627768 + 0.778401i \(0.283969\pi\)
\(212\) 0 0
\(213\) 146.196 0.686367
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 98.8513i − 0.455536i
\(218\) 0 0
\(219\) 182.603 0.833802
\(220\) 0 0
\(221\) 249.418i 1.12859i
\(222\) 0 0
\(223\) −30.6882 −0.137615 −0.0688076 0.997630i \(-0.521919\pi\)
−0.0688076 + 0.997630i \(0.521919\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 295.846i − 1.30329i −0.758525 0.651643i \(-0.774080\pi\)
0.758525 0.651643i \(-0.225920\pi\)
\(228\) 0 0
\(229\) − 256.718i − 1.12104i −0.828141 0.560519i \(-0.810602\pi\)
0.828141 0.560519i \(-0.189398\pi\)
\(230\) 0 0
\(231\) 148.868i 0.644451i
\(232\) 0 0
\(233\) 404.564i 1.73633i 0.496279 + 0.868163i \(0.334699\pi\)
−0.496279 + 0.868163i \(0.665301\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 127.588 0.538344
\(238\) 0 0
\(239\) − 115.150i − 0.481799i −0.970550 0.240899i \(-0.922558\pi\)
0.970550 0.240899i \(-0.0774424\pi\)
\(240\) 0 0
\(241\) 251.415 1.04322 0.521609 0.853185i \(-0.325332\pi\)
0.521609 + 0.853185i \(0.325332\pi\)
\(242\) 0 0
\(243\) 15.5885i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −16.8591 −0.0682555
\(248\) 0 0
\(249\) −21.2820 −0.0854700
\(250\) 0 0
\(251\) −6.85125 −0.0272958 −0.0136479 0.999907i \(-0.504344\pi\)
−0.0136479 + 0.999907i \(0.504344\pi\)
\(252\) 0 0
\(253\) 171.898 0.679439
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 248.277i 0.966058i 0.875604 + 0.483029i \(0.160463\pi\)
−0.875604 + 0.483029i \(0.839537\pi\)
\(258\) 0 0
\(259\) 107.138 0.413662
\(260\) 0 0
\(261\) 120.287i 0.460871i
\(262\) 0 0
\(263\) 498.835 1.89671 0.948356 0.317208i \(-0.102745\pi\)
0.948356 + 0.317208i \(0.102745\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 57.3975i − 0.214972i
\(268\) 0 0
\(269\) 234.611i 0.872158i 0.899908 + 0.436079i \(0.143633\pi\)
−0.899908 + 0.436079i \(0.856367\pi\)
\(270\) 0 0
\(271\) 101.321i 0.373878i 0.982372 + 0.186939i \(0.0598566\pi\)
−0.982372 + 0.186939i \(0.940143\pi\)
\(272\) 0 0
\(273\) − 292.708i − 1.07219i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −169.942 −0.613509 −0.306755 0.951789i \(-0.599243\pi\)
−0.306755 + 0.951789i \(0.599243\pi\)
\(278\) 0 0
\(279\) 27.6027i 0.0989346i
\(280\) 0 0
\(281\) −111.128 −0.395474 −0.197737 0.980255i \(-0.563359\pi\)
−0.197737 + 0.980255i \(0.563359\pi\)
\(282\) 0 0
\(283\) 550.620i 1.94566i 0.231531 + 0.972828i \(0.425627\pi\)
−0.231531 + 0.972828i \(0.574373\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 554.041 1.93046
\(288\) 0 0
\(289\) 37.5744 0.130015
\(290\) 0 0
\(291\) 119.751 0.411516
\(292\) 0 0
\(293\) −223.509 −0.762829 −0.381414 0.924404i \(-0.624563\pi\)
−0.381414 + 0.924404i \(0.624563\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 41.5692i − 0.139964i
\(298\) 0 0
\(299\) −337.990 −1.13040
\(300\) 0 0
\(301\) − 137.353i − 0.456323i
\(302\) 0 0
\(303\) −168.455 −0.555956
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 371.790i 1.21104i 0.795829 + 0.605521i \(0.207035\pi\)
−0.795829 + 0.605521i \(0.792965\pi\)
\(308\) 0 0
\(309\) 241.911i 0.782883i
\(310\) 0 0
\(311\) − 330.023i − 1.06117i −0.847633 0.530583i \(-0.821973\pi\)
0.847633 0.530583i \(-0.178027\pi\)
\(312\) 0 0
\(313\) 80.2769i 0.256476i 0.991743 + 0.128238i \(0.0409321\pi\)
−0.991743 + 0.128238i \(0.959068\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 68.8833 0.217297 0.108649 0.994080i \(-0.465348\pi\)
0.108649 + 0.994080i \(0.465348\pi\)
\(318\) 0 0
\(319\) − 320.766i − 1.00554i
\(320\) 0 0
\(321\) −342.564 −1.06718
\(322\) 0 0
\(323\) − 16.9948i − 0.0526156i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 330.325 1.01017
\(328\) 0 0
\(329\) 16.5744 0.0503780
\(330\) 0 0
\(331\) 396.056 1.19654 0.598272 0.801293i \(-0.295854\pi\)
0.598272 + 0.801293i \(0.295854\pi\)
\(332\) 0 0
\(333\) −29.9168 −0.0898403
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 231.723i 0.687606i 0.939042 + 0.343803i \(0.111715\pi\)
−0.939042 + 0.343803i \(0.888285\pi\)
\(338\) 0 0
\(339\) −196.956 −0.580992
\(340\) 0 0
\(341\) − 73.6073i − 0.215857i
\(342\) 0 0
\(343\) 187.215 0.545815
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 462.123i − 1.33177i −0.746056 0.665883i \(-0.768055\pi\)
0.746056 0.665883i \(-0.231945\pi\)
\(348\) 0 0
\(349\) − 266.993i − 0.765022i −0.923951 0.382511i \(-0.875059\pi\)
0.923951 0.382511i \(-0.124941\pi\)
\(350\) 0 0
\(351\) 81.7343i 0.232861i
\(352\) 0 0
\(353\) − 262.862i − 0.744650i −0.928102 0.372325i \(-0.878561\pi\)
0.928102 0.372325i \(-0.121439\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 295.064 0.826510
\(358\) 0 0
\(359\) 164.185i 0.457339i 0.973504 + 0.228669i \(0.0734374\pi\)
−0.973504 + 0.228669i \(0.926563\pi\)
\(360\) 0 0
\(361\) −359.851 −0.996818
\(362\) 0 0
\(363\) − 98.7269i − 0.271975i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −242.475 −0.660696 −0.330348 0.943859i \(-0.607166\pi\)
−0.330348 + 0.943859i \(0.607166\pi\)
\(368\) 0 0
\(369\) −154.708 −0.419262
\(370\) 0 0
\(371\) −307.061 −0.827659
\(372\) 0 0
\(373\) 328.480 0.880643 0.440321 0.897840i \(-0.354864\pi\)
0.440321 + 0.897840i \(0.354864\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 630.697i 1.67294i
\(378\) 0 0
\(379\) 36.2102 0.0955415 0.0477708 0.998858i \(-0.484788\pi\)
0.0477708 + 0.998858i \(0.484788\pi\)
\(380\) 0 0
\(381\) 63.8417i 0.167564i
\(382\) 0 0
\(383\) 164.295 0.428969 0.214485 0.976727i \(-0.431193\pi\)
0.214485 + 0.976727i \(0.431193\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 38.3538i 0.0991055i
\(388\) 0 0
\(389\) − 604.936i − 1.55510i −0.628819 0.777552i \(-0.716461\pi\)
0.628819 0.777552i \(-0.283539\pi\)
\(390\) 0 0
\(391\) − 340.711i − 0.871383i
\(392\) 0 0
\(393\) − 337.128i − 0.857832i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −541.699 −1.36448 −0.682241 0.731128i \(-0.738994\pi\)
−0.682241 + 0.731128i \(0.738994\pi\)
\(398\) 0 0
\(399\) 19.9445i 0.0499863i
\(400\) 0 0
\(401\) −379.569 −0.946557 −0.473278 0.880913i \(-0.656930\pi\)
−0.473278 + 0.880913i \(0.656930\pi\)
\(402\) 0 0
\(403\) 144.728i 0.359127i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 79.7782 0.196015
\(408\) 0 0
\(409\) −251.415 −0.614707 −0.307354 0.951595i \(-0.599443\pi\)
−0.307354 + 0.951595i \(0.599443\pi\)
\(410\) 0 0
\(411\) −28.4589 −0.0692432
\(412\) 0 0
\(413\) −120.494 −0.291753
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 196.574i − 0.471401i
\(418\) 0 0
\(419\) 268.133 0.639936 0.319968 0.947428i \(-0.396328\pi\)
0.319968 + 0.947428i \(0.396328\pi\)
\(420\) 0 0
\(421\) − 218.261i − 0.518434i −0.965819 0.259217i \(-0.916536\pi\)
0.965819 0.259217i \(-0.0834645\pi\)
\(422\) 0 0
\(423\) −4.62815 −0.0109412
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 16.5744i − 0.0388159i
\(428\) 0 0
\(429\) − 217.958i − 0.508061i
\(430\) 0 0
\(431\) 550.955i 1.27832i 0.769074 + 0.639159i \(0.220718\pi\)
−0.769074 + 0.639159i \(0.779282\pi\)
\(432\) 0 0
\(433\) 263.128i 0.607686i 0.952722 + 0.303843i \(0.0982699\pi\)
−0.952722 + 0.303843i \(0.901730\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 23.0300 0.0527002
\(438\) 0 0
\(439\) − 440.489i − 1.00339i −0.865044 0.501696i \(-0.832710\pi\)
0.865044 0.501696i \(-0.167290\pi\)
\(440\) 0 0
\(441\) −199.277 −0.451875
\(442\) 0 0
\(443\) − 228.708i − 0.516270i −0.966109 0.258135i \(-0.916892\pi\)
0.966109 0.258135i \(-0.0831080\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 54.8475 0.122701
\(448\) 0 0
\(449\) 108.410 0.241448 0.120724 0.992686i \(-0.461478\pi\)
0.120724 + 0.992686i \(0.461478\pi\)
\(450\) 0 0
\(451\) 412.554 0.914753
\(452\) 0 0
\(453\) 156.788 0.346111
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 561.692i 1.22909i 0.788883 + 0.614543i \(0.210660\pi\)
−0.788883 + 0.614543i \(0.789340\pi\)
\(458\) 0 0
\(459\) −82.3923 −0.179504
\(460\) 0 0
\(461\) 335.160i 0.727028i 0.931589 + 0.363514i \(0.118423\pi\)
−0.931589 + 0.363514i \(0.881577\pi\)
\(462\) 0 0
\(463\) −389.912 −0.842142 −0.421071 0.907028i \(-0.638346\pi\)
−0.421071 + 0.907028i \(0.638346\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 546.410i 1.17004i 0.811018 + 0.585022i \(0.198914\pi\)
−0.811018 + 0.585022i \(0.801086\pi\)
\(468\) 0 0
\(469\) 464.290i 0.989958i
\(470\) 0 0
\(471\) 400.131i 0.849535i
\(472\) 0 0
\(473\) − 102.277i − 0.216230i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 85.7424 0.179753
\(478\) 0 0
\(479\) 368.369i 0.769037i 0.923117 + 0.384519i \(0.125633\pi\)
−0.923117 + 0.384519i \(0.874367\pi\)
\(480\) 0 0
\(481\) −156.862 −0.326116
\(482\) 0 0
\(483\) 399.846i 0.827839i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −90.6326 −0.186104 −0.0930519 0.995661i \(-0.529662\pi\)
−0.0930519 + 0.995661i \(0.529662\pi\)
\(488\) 0 0
\(489\) −38.7180 −0.0791778
\(490\) 0 0
\(491\) 17.6462 0.0359392 0.0179696 0.999839i \(-0.494280\pi\)
0.0179696 + 0.999839i \(0.494280\pi\)
\(492\) 0 0
\(493\) −635.775 −1.28960
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 906.831i − 1.82461i
\(498\) 0 0
\(499\) 548.631 1.09946 0.549730 0.835342i \(-0.314731\pi\)
0.549730 + 0.835342i \(0.314731\pi\)
\(500\) 0 0
\(501\) 382.859i 0.764189i
\(502\) 0 0
\(503\) −262.475 −0.521820 −0.260910 0.965363i \(-0.584023\pi\)
−0.260910 + 0.965363i \(0.584023\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 135.837i 0.267923i
\(508\) 0 0
\(509\) 230.093i 0.452049i 0.974122 + 0.226025i \(0.0725730\pi\)
−0.974122 + 0.226025i \(0.927427\pi\)
\(510\) 0 0
\(511\) − 1132.65i − 2.21654i
\(512\) 0 0
\(513\) − 5.56922i − 0.0108562i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 12.3417 0.0238718
\(518\) 0 0
\(519\) 401.013i 0.772665i
\(520\) 0 0
\(521\) 164.144 0.315055 0.157527 0.987515i \(-0.449648\pi\)
0.157527 + 0.987515i \(0.449648\pi\)
\(522\) 0 0
\(523\) − 185.492i − 0.354670i −0.984151 0.177335i \(-0.943252\pi\)
0.984151 0.177335i \(-0.0567476\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −145.893 −0.276838
\(528\) 0 0
\(529\) −67.2975 −0.127216
\(530\) 0 0
\(531\) 33.6462 0.0633638
\(532\) 0 0
\(533\) −811.172 −1.52190
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 335.405i 0.624590i
\(538\) 0 0
\(539\) 531.405 0.985909
\(540\) 0 0
\(541\) − 891.253i − 1.64742i −0.567013 0.823709i \(-0.691901\pi\)
0.567013 0.823709i \(-0.308099\pi\)
\(542\) 0 0
\(543\) 468.505 0.862809
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 524.631i − 0.959105i −0.877513 0.479553i \(-0.840799\pi\)
0.877513 0.479553i \(-0.159201\pi\)
\(548\) 0 0
\(549\) 4.62815i 0.00843014i
\(550\) 0 0
\(551\) − 42.9745i − 0.0779937i
\(552\) 0 0
\(553\) − 791.405i − 1.43111i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −570.804 −1.02478 −0.512391 0.858752i \(-0.671240\pi\)
−0.512391 + 0.858752i \(0.671240\pi\)
\(558\) 0 0
\(559\) 201.099i 0.359748i
\(560\) 0 0
\(561\) 219.713 0.391645
\(562\) 0 0
\(563\) − 161.877i − 0.287526i −0.989612 0.143763i \(-0.954080\pi\)
0.989612 0.143763i \(-0.0459203\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 96.6927 0.170534
\(568\) 0 0
\(569\) −624.123 −1.09688 −0.548438 0.836191i \(-0.684778\pi\)
−0.548438 + 0.836191i \(0.684778\pi\)
\(570\) 0 0
\(571\) 593.031 1.03858 0.519291 0.854597i \(-0.326196\pi\)
0.519291 + 0.854597i \(0.326196\pi\)
\(572\) 0 0
\(573\) −539.551 −0.941625
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 1003.68i − 1.73948i −0.493507 0.869742i \(-0.664285\pi\)
0.493507 0.869742i \(-0.335715\pi\)
\(578\) 0 0
\(579\) 83.6180 0.144418
\(580\) 0 0
\(581\) 132.009i 0.227210i
\(582\) 0 0
\(583\) −228.646 −0.392189
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 859.215i − 1.46374i −0.681444 0.731870i \(-0.738648\pi\)
0.681444 0.731870i \(-0.261352\pi\)
\(588\) 0 0
\(589\) − 9.86151i − 0.0167428i
\(590\) 0 0
\(591\) 436.274i 0.738196i
\(592\) 0 0
\(593\) 1007.42i 1.69885i 0.527713 + 0.849423i \(0.323050\pi\)
−0.527713 + 0.849423i \(0.676950\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −124.915 −0.209239
\(598\) 0 0
\(599\) 86.0598i 0.143672i 0.997416 + 0.0718362i \(0.0228859\pi\)
−0.997416 + 0.0718362i \(0.977114\pi\)
\(600\) 0 0
\(601\) −406.000 −0.675541 −0.337770 0.941229i \(-0.609673\pi\)
−0.337770 + 0.941229i \(0.609673\pi\)
\(602\) 0 0
\(603\) − 129.646i − 0.215002i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −1187.80 −1.95684 −0.978422 0.206617i \(-0.933755\pi\)
−0.978422 + 0.206617i \(0.933755\pi\)
\(608\) 0 0
\(609\) 746.123 1.22516
\(610\) 0 0
\(611\) −24.2666 −0.0397162
\(612\) 0 0
\(613\) 500.378 0.816277 0.408139 0.912920i \(-0.366178\pi\)
0.408139 + 0.912920i \(0.366178\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 88.8306i 0.143972i 0.997406 + 0.0719859i \(0.0229337\pi\)
−0.997406 + 0.0719859i \(0.977066\pi\)
\(618\) 0 0
\(619\) −424.231 −0.685349 −0.342674 0.939454i \(-0.611333\pi\)
−0.342674 + 0.939454i \(0.611333\pi\)
\(620\) 0 0
\(621\) − 111.651i − 0.179792i
\(622\) 0 0
\(623\) −356.027 −0.571472
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 14.8513i 0.0236862i
\(628\) 0 0
\(629\) − 158.124i − 0.251390i
\(630\) 0 0
\(631\) 90.6326i 0.143633i 0.997418 + 0.0718166i \(0.0228796\pi\)
−0.997418 + 0.0718166i \(0.977120\pi\)
\(632\) 0 0
\(633\) 458.851i 0.724883i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −1044.86 −1.64028
\(638\) 0 0
\(639\) 253.219i 0.396274i
\(640\) 0 0
\(641\) 1090.40 1.70109 0.850546 0.525901i \(-0.176272\pi\)
0.850546 + 0.525901i \(0.176272\pi\)
\(642\) 0 0
\(643\) − 454.200i − 0.706376i −0.935552 0.353188i \(-0.885098\pi\)
0.935552 0.353188i \(-0.114902\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −610.789 −0.944032 −0.472016 0.881590i \(-0.656474\pi\)
−0.472016 + 0.881590i \(0.656474\pi\)
\(648\) 0 0
\(649\) −89.7231 −0.138248
\(650\) 0 0
\(651\) 171.215 0.263004
\(652\) 0 0
\(653\) 673.612 1.03157 0.515783 0.856720i \(-0.327501\pi\)
0.515783 + 0.856720i \(0.327501\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 316.277i 0.481396i
\(658\) 0 0
\(659\) −819.328 −1.24329 −0.621645 0.783299i \(-0.713535\pi\)
−0.621645 + 0.783299i \(0.713535\pi\)
\(660\) 0 0
\(661\) − 370.628i − 0.560707i −0.959897 0.280354i \(-0.909548\pi\)
0.959897 0.280354i \(-0.0904518\pi\)
\(662\) 0 0
\(663\) −432.004 −0.651590
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 861.549i − 1.29168i
\(668\) 0 0
\(669\) − 53.1535i − 0.0794521i
\(670\) 0 0
\(671\) − 12.3417i − 0.0183930i
\(672\) 0 0
\(673\) 255.703i 0.379944i 0.981789 + 0.189972i \(0.0608398\pi\)
−0.981789 + 0.189972i \(0.939160\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 934.323 1.38009 0.690047 0.723765i \(-0.257590\pi\)
0.690047 + 0.723765i \(0.257590\pi\)
\(678\) 0 0
\(679\) − 742.798i − 1.09396i
\(680\) 0 0
\(681\) 512.420 0.752453
\(682\) 0 0
\(683\) 1142.54i 1.67283i 0.548096 + 0.836415i \(0.315353\pi\)
−0.548096 + 0.836415i \(0.684647\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 444.648 0.647232
\(688\) 0 0
\(689\) 449.569 0.652495
\(690\) 0 0
\(691\) −1316.90 −1.90578 −0.952892 0.303309i \(-0.901909\pi\)
−0.952892 + 0.303309i \(0.901909\pi\)
\(692\) 0 0
\(693\) −257.847 −0.372074
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 817.703i − 1.17317i
\(698\) 0 0
\(699\) −700.726 −1.00247
\(700\) 0 0
\(701\) 318.493i 0.454341i 0.973855 + 0.227170i \(0.0729474\pi\)
−0.973855 + 0.227170i \(0.927053\pi\)
\(702\) 0 0
\(703\) 10.6883 0.0152038
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1044.90i 1.47793i
\(708\) 0 0
\(709\) 289.831i 0.408788i 0.978889 + 0.204394i \(0.0655224\pi\)
−0.978889 + 0.204394i \(0.934478\pi\)
\(710\) 0 0
\(711\) 220.988i 0.310813i
\(712\) 0 0
\(713\) − 197.703i − 0.277283i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 199.445 0.278167
\(718\) 0 0
\(719\) 491.122i 0.683062i 0.939870 + 0.341531i \(0.110945\pi\)
−0.939870 + 0.341531i \(0.889055\pi\)
\(720\) 0 0
\(721\) 1500.53 2.08118
\(722\) 0 0
\(723\) 435.464i 0.602302i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −774.918 −1.06591 −0.532956 0.846143i \(-0.678919\pi\)
−0.532956 + 0.846143i \(0.678919\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) −202.718 −0.277316
\(732\) 0 0
\(733\) 858.966 1.17185 0.585925 0.810365i \(-0.300731\pi\)
0.585925 + 0.810365i \(0.300731\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 345.723i 0.469095i
\(738\) 0 0
\(739\) 63.1948 0.0855139 0.0427569 0.999086i \(-0.486386\pi\)
0.0427569 + 0.999086i \(0.486386\pi\)
\(740\) 0 0
\(741\) − 29.2008i − 0.0394073i
\(742\) 0 0
\(743\) −1105.00 −1.48721 −0.743604 0.668620i \(-0.766885\pi\)
−0.743604 + 0.668620i \(0.766885\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 36.8616i − 0.0493461i
\(748\) 0 0
\(749\) 2124.87i 2.83694i
\(750\) 0 0
\(751\) − 804.119i − 1.07073i −0.844621 0.535365i \(-0.820174\pi\)
0.844621 0.535365i \(-0.179826\pi\)
\(752\) 0 0
\(753\) − 11.8667i − 0.0157593i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1351.03 −1.78471 −0.892355 0.451334i \(-0.850948\pi\)
−0.892355 + 0.451334i \(0.850948\pi\)
\(758\) 0 0
\(759\) 297.736i 0.392274i
\(760\) 0 0
\(761\) −709.805 −0.932726 −0.466363 0.884593i \(-0.654436\pi\)
−0.466363 + 0.884593i \(0.654436\pi\)
\(762\) 0 0
\(763\) − 2048.95i − 2.68539i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 176.415 0.230007
\(768\) 0 0
\(769\) 195.703 0.254490 0.127245 0.991871i \(-0.459387\pi\)
0.127245 + 0.991871i \(0.459387\pi\)
\(770\) 0 0
\(771\) −430.028 −0.557754
\(772\) 0 0
\(773\) −12.5484 −0.0162334 −0.00811670 0.999967i \(-0.502584\pi\)
−0.00811670 + 0.999967i \(0.502584\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 185.569i 0.238828i
\(778\) 0 0
\(779\) 55.2717 0.0709521
\(780\) 0 0
\(781\) − 675.251i − 0.864598i
\(782\) 0 0
\(783\) −208.344 −0.266084
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 432.918i 0.550086i 0.961432 + 0.275043i \(0.0886921\pi\)
−0.961432 + 0.275043i \(0.911308\pi\)
\(788\) 0 0
\(789\) 864.008i 1.09507i
\(790\) 0 0
\(791\) 1221.69i 1.54449i
\(792\) 0 0
\(793\) 24.2666i 0.0306010i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 700.746 0.879230 0.439615 0.898186i \(-0.355115\pi\)
0.439615 + 0.898186i \(0.355115\pi\)
\(798\) 0 0
\(799\) − 24.4619i − 0.0306157i
\(800\) 0 0
\(801\) 99.4153 0.124114
\(802\) 0 0
\(803\) − 843.405i − 1.05032i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −406.357 −0.503541
\(808\) 0 0
\(809\) 848.102 1.04833 0.524167 0.851615i \(-0.324377\pi\)
0.524167 + 0.851615i \(0.324377\pi\)
\(810\) 0 0
\(811\) −1242.18 −1.53166 −0.765832 0.643041i \(-0.777673\pi\)
−0.765832 + 0.643041i \(0.777673\pi\)
\(812\) 0 0
\(813\) −175.493 −0.215858
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 13.7025i − 0.0167717i
\(818\) 0 0
\(819\) 506.985 0.619029
\(820\) 0 0
\(821\) − 208.303i − 0.253719i −0.991921 0.126859i \(-0.959510\pi\)
0.991921 0.126859i \(-0.0404897\pi\)
\(822\) 0 0
\(823\) −778.114 −0.945461 −0.472730 0.881207i \(-0.656732\pi\)
−0.472730 + 0.881207i \(0.656732\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1280.57i 1.54845i 0.632910 + 0.774225i \(0.281860\pi\)
−0.632910 + 0.774225i \(0.718140\pi\)
\(828\) 0 0
\(829\) − 9.78043i − 0.0117979i −0.999983 0.00589893i \(-0.998122\pi\)
0.999983 0.00589893i \(-0.00187770\pi\)
\(830\) 0 0
\(831\) − 294.348i − 0.354210i
\(832\) 0 0
\(833\) − 1053.27i − 1.26443i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −47.8094 −0.0571199
\(838\) 0 0
\(839\) 1232.38i 1.46886i 0.678682 + 0.734432i \(0.262551\pi\)
−0.678682 + 0.734432i \(0.737449\pi\)
\(840\) 0 0
\(841\) −766.672 −0.911619
\(842\) 0 0
\(843\) − 192.480i − 0.228327i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −612.387 −0.723007
\(848\) 0 0
\(849\) −953.703 −1.12332
\(850\) 0 0
\(851\) 214.277 0.251794
\(852\) 0 0
\(853\) −412.170 −0.483201 −0.241600 0.970376i \(-0.577672\pi\)
−0.241600 + 0.970376i \(0.577672\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 136.451i − 0.159220i −0.996826 0.0796099i \(-0.974633\pi\)
0.996826 0.0796099i \(-0.0253675\pi\)
\(858\) 0 0
\(859\) −649.646 −0.756282 −0.378141 0.925748i \(-0.623437\pi\)
−0.378141 + 0.925748i \(0.623437\pi\)
\(860\) 0 0
\(861\) 959.627i 1.11455i
\(862\) 0 0
\(863\) 1192.38 1.38167 0.690833 0.723015i \(-0.257244\pi\)
0.690833 + 0.723015i \(0.257244\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 65.0807i 0.0750643i
\(868\) 0 0
\(869\) − 589.302i − 0.678138i
\(870\) 0 0
\(871\) − 679.768i − 0.780446i
\(872\) 0 0
\(873\) 207.415i 0.237589i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −744.451 −0.848861 −0.424431 0.905460i \(-0.639526\pi\)
−0.424431 + 0.905460i \(0.639526\pi\)
\(878\) 0 0
\(879\) − 387.129i − 0.440419i
\(880\) 0 0
\(881\) 651.108 0.739055 0.369528 0.929220i \(-0.379520\pi\)
0.369528 + 0.929220i \(0.379520\pi\)
\(882\) 0 0
\(883\) 1171.44i 1.32666i 0.748327 + 0.663330i \(0.230857\pi\)
−0.748327 + 0.663330i \(0.769143\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1026.87 −1.15769 −0.578845 0.815437i \(-0.696496\pi\)
−0.578845 + 0.815437i \(0.696496\pi\)
\(888\) 0 0
\(889\) 396.000 0.445444
\(890\) 0 0
\(891\) 72.0000 0.0808081
\(892\) 0 0
\(893\) 1.65348 0.00185160
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 585.415i − 0.652637i
\(898\) 0 0
\(899\) −368.918 −0.410365
\(900\) 0 0
\(901\) 453.189i 0.502984i
\(902\) 0 0
\(903\) 237.903 0.263458
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 470.508i 0.518752i 0.965776 + 0.259376i \(0.0835168\pi\)
−0.965776 + 0.259376i \(0.916483\pi\)
\(908\) 0 0
\(909\) − 291.772i − 0.320981i
\(910\) 0 0
\(911\) − 553.930i − 0.608046i −0.952665 0.304023i \(-0.901670\pi\)
0.952665 0.304023i \(-0.0983300\pi\)
\(912\) 0 0
\(913\) 98.2975i 0.107664i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −2091.15 −2.28043
\(918\) 0 0
\(919\) 910.123i 0.990341i 0.868796 + 0.495170i \(0.164894\pi\)
−0.868796 + 0.495170i \(0.835106\pi\)
\(920\) 0 0
\(921\) −643.959 −0.699195
\(922\) 0 0
\(923\) 1327.69i 1.43845i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −419.002 −0.451997
\(928\) 0 0
\(929\) −1278.69 −1.37641 −0.688206 0.725515i \(-0.741602\pi\)
−0.688206 + 0.725515i \(0.741602\pi\)
\(930\) 0 0
\(931\) 71.1948 0.0764713
\(932\) 0 0
\(933\) 571.616 0.612664
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 634.554i 0.677219i 0.940927 + 0.338609i \(0.109956\pi\)
−0.940927 + 0.338609i \(0.890044\pi\)
\(938\) 0 0
\(939\) −139.044 −0.148076
\(940\) 0 0
\(941\) 1136.25i 1.20749i 0.797177 + 0.603745i \(0.206326\pi\)
−0.797177 + 0.603745i \(0.793674\pi\)
\(942\) 0 0
\(943\) 1108.08 1.17506
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 775.615i − 0.819023i −0.912305 0.409512i \(-0.865699\pi\)
0.912305 0.409512i \(-0.134301\pi\)
\(948\) 0 0
\(949\) 1658.32i 1.74744i
\(950\) 0 0
\(951\) 119.309i 0.125457i
\(952\) 0 0
\(953\) − 599.590i − 0.629160i −0.949231 0.314580i \(-0.898136\pi\)
0.949231 0.314580i \(-0.101864\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 555.583 0.580547
\(958\) 0 0
\(959\) 176.526i 0.184073i
\(960\) 0 0
\(961\) 876.343 0.911908
\(962\) 0 0
\(963\) − 593.338i − 0.616135i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1407.53 −1.45556 −0.727780 0.685811i \(-0.759448\pi\)
−0.727780 + 0.685811i \(0.759448\pi\)
\(968\) 0 0
\(969\) 29.4359 0.0303776
\(970\) 0 0
\(971\) −653.661 −0.673184 −0.336592 0.941651i \(-0.609274\pi\)
−0.336592 + 0.941651i \(0.609274\pi\)
\(972\) 0 0
\(973\) −1219.32 −1.25315
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 1003.57i − 1.02719i −0.858031 0.513597i \(-0.828313\pi\)
0.858031 0.513597i \(-0.171687\pi\)
\(978\) 0 0
\(979\) −265.108 −0.270794
\(980\) 0 0
\(981\) 572.140i 0.583221i
\(982\) 0 0
\(983\) 105.672 0.107500 0.0537498 0.998554i \(-0.482883\pi\)
0.0537498 + 0.998554i \(0.482883\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 28.7077i 0.0290858i
\(988\) 0 0
\(989\) − 274.706i − 0.277762i
\(990\) 0 0
\(991\) − 1728.18i − 1.74388i −0.489615 0.871938i \(-0.662863\pi\)
0.489615 0.871938i \(-0.337137\pi\)
\(992\) 0 0
\(993\) 685.990i 0.690825i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −135.205 −0.135612 −0.0678060 0.997699i \(-0.521600\pi\)
−0.0678060 + 0.997699i \(0.521600\pi\)
\(998\) 0 0
\(999\) − 51.8175i − 0.0518693i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.3.p.a.1999.8 8
4.3 odd 2 600.3.p.a.499.7 8
5.2 odd 4 2400.3.g.a.751.4 4
5.3 odd 4 96.3.b.a.79.1 4
5.4 even 2 inner 2400.3.p.a.1999.1 8
8.3 odd 2 inner 2400.3.p.a.1999.5 8
8.5 even 2 600.3.p.a.499.1 8
15.8 even 4 288.3.b.b.271.3 4
20.3 even 4 24.3.b.a.19.1 4
20.7 even 4 600.3.g.a.451.4 4
20.19 odd 2 600.3.p.a.499.2 8
40.3 even 4 96.3.b.a.79.2 4
40.13 odd 4 24.3.b.a.19.2 yes 4
40.19 odd 2 inner 2400.3.p.a.1999.4 8
40.27 even 4 2400.3.g.a.751.3 4
40.29 even 2 600.3.p.a.499.8 8
40.37 odd 4 600.3.g.a.451.3 4
60.23 odd 4 72.3.b.b.19.4 4
80.3 even 4 768.3.g.h.511.6 8
80.13 odd 4 768.3.g.h.511.2 8
80.43 even 4 768.3.g.h.511.3 8
80.53 odd 4 768.3.g.h.511.7 8
120.53 even 4 72.3.b.b.19.3 4
120.83 odd 4 288.3.b.b.271.2 4
240.53 even 4 2304.3.g.z.1279.4 8
240.83 odd 4 2304.3.g.z.1279.5 8
240.173 even 4 2304.3.g.z.1279.6 8
240.203 odd 4 2304.3.g.z.1279.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.3.b.a.19.1 4 20.3 even 4
24.3.b.a.19.2 yes 4 40.13 odd 4
72.3.b.b.19.3 4 120.53 even 4
72.3.b.b.19.4 4 60.23 odd 4
96.3.b.a.79.1 4 5.3 odd 4
96.3.b.a.79.2 4 40.3 even 4
288.3.b.b.271.2 4 120.83 odd 4
288.3.b.b.271.3 4 15.8 even 4
600.3.g.a.451.3 4 40.37 odd 4
600.3.g.a.451.4 4 20.7 even 4
600.3.p.a.499.1 8 8.5 even 2
600.3.p.a.499.2 8 20.19 odd 2
600.3.p.a.499.7 8 4.3 odd 2
600.3.p.a.499.8 8 40.29 even 2
768.3.g.h.511.2 8 80.13 odd 4
768.3.g.h.511.3 8 80.43 even 4
768.3.g.h.511.6 8 80.3 even 4
768.3.g.h.511.7 8 80.53 odd 4
2304.3.g.z.1279.3 8 240.203 odd 4
2304.3.g.z.1279.4 8 240.53 even 4
2304.3.g.z.1279.5 8 240.83 odd 4
2304.3.g.z.1279.6 8 240.173 even 4
2400.3.g.a.751.3 4 40.27 even 4
2400.3.g.a.751.4 4 5.2 odd 4
2400.3.p.a.1999.1 8 5.4 even 2 inner
2400.3.p.a.1999.4 8 40.19 odd 2 inner
2400.3.p.a.1999.5 8 8.3 odd 2 inner
2400.3.p.a.1999.8 8 1.1 even 1 trivial