Properties

Label 12-3800e6-1.1-c1e6-0-6
Degree $12$
Conductor $3.011\times 10^{21}$
Sign $1$
Analytic cond. $7.80484\times 10^{8}$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·9-s − 6·19-s − 34·29-s + 4·31-s + 12·41-s + 17·49-s − 30·59-s + 16·61-s − 8·71-s − 4·79-s + 2·81-s − 12·89-s − 24·101-s − 38·109-s − 66·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 57·169-s − 30·171-s + 173-s + ⋯
L(s)  = 1  + 5/3·9-s − 1.37·19-s − 6.31·29-s + 0.718·31-s + 1.87·41-s + 17/7·49-s − 3.90·59-s + 2.04·61-s − 0.949·71-s − 0.450·79-s + 2/9·81-s − 1.27·89-s − 2.38·101-s − 3.63·109-s − 6·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 4.38·169-s − 2.29·171-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{18} \cdot 5^{12} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{18} \cdot 5^{12} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{18} \cdot 5^{12} \cdot 19^{6}\)
Sign: $1$
Analytic conductor: \(7.80484\times 10^{8}\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{18} \cdot 5^{12} \cdot 19^{6} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.661780061\)
\(L(\frac12)\) \(\approx\) \(3.661780061\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( ( 1 + T )^{6} \)
good3 \( 1 - 5 T^{2} + 23 T^{4} - 86 T^{6} + 23 p^{2} T^{8} - 5 p^{4} T^{10} + p^{6} T^{12} \)
7 \( 1 - 17 T^{2} + 211 T^{4} - 1718 T^{6} + 211 p^{2} T^{8} - 17 p^{4} T^{10} + p^{6} T^{12} \)
11 \( ( 1 + p T^{2} )^{6} \)
13 \( 1 - 57 T^{2} + 1487 T^{4} - 23774 T^{6} + 1487 p^{2} T^{8} - 57 p^{4} T^{10} + p^{6} T^{12} \)
17 \( 1 - 69 T^{2} + 2147 T^{4} - 42926 T^{6} + 2147 p^{2} T^{8} - 69 p^{4} T^{10} + p^{6} T^{12} \)
23 \( 1 - 73 T^{2} + 3107 T^{4} - 85926 T^{6} + 3107 p^{2} T^{8} - 73 p^{4} T^{10} + p^{6} T^{12} \)
29 \( ( 1 + 17 T + 171 T^{2} + 1110 T^{3} + 171 p T^{4} + 17 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
31 \( ( 1 - 2 T + 45 T^{2} + 4 T^{3} + 45 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
37 \( 1 - 158 T^{2} + 11191 T^{4} - 496772 T^{6} + 11191 p^{2} T^{8} - 158 p^{4} T^{10} + p^{6} T^{12} \)
41 \( ( 1 - 6 T + 71 T^{2} - 436 T^{3} + 71 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
43 \( 1 - 174 T^{2} + 13991 T^{4} - 717764 T^{6} + 13991 p^{2} T^{8} - 174 p^{4} T^{10} + p^{6} T^{12} \)
47 \( 1 - 106 T^{2} + 5423 T^{4} - 232716 T^{6} + 5423 p^{2} T^{8} - 106 p^{4} T^{10} + p^{6} T^{12} \)
53 \( 1 - 209 T^{2} + 20271 T^{4} - 1269614 T^{6} + 20271 p^{2} T^{8} - 209 p^{4} T^{10} + p^{6} T^{12} \)
59 \( ( 1 + 15 T + 149 T^{2} + 986 T^{3} + 149 p T^{4} + 15 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
61 \( ( 1 - 8 T + 179 T^{2} - 912 T^{3} + 179 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
67 \( 1 - 37 T^{2} + 7511 T^{4} - 169110 T^{6} + 7511 p^{2} T^{8} - 37 p^{4} T^{10} + p^{6} T^{12} \)
71 \( ( 1 + 4 T + 21 T^{2} - 456 T^{3} + 21 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
73 \( 1 - 229 T^{2} + 27155 T^{4} - 30366 p T^{6} + 27155 p^{2} T^{8} - 229 p^{4} T^{10} + p^{6} T^{12} \)
79 \( ( 1 + 2 T + 213 T^{2} + 284 T^{3} + 213 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
83 \( 1 - 366 T^{2} + 60407 T^{4} - 6127364 T^{6} + 60407 p^{2} T^{8} - 366 p^{4} T^{10} + p^{6} T^{12} \)
89 \( ( 1 + 6 T + 215 T^{2} + 884 T^{3} + 215 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
97 \( 1 - 358 T^{2} + 62671 T^{4} - 7159060 T^{6} + 62671 p^{2} T^{8} - 358 p^{4} T^{10} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.28796108798481282090230690788, −4.23071940256840709222236083897, −4.18499771242696888959210147481, −4.05960019480092712013542013190, −3.79803893725793442786446647294, −3.69165310339962767369560678964, −3.57495112561867474205829030122, −3.56428376748819566317412804000, −3.16697465462797393106678710151, −3.15188261646090351558425730707, −2.77814777577673496579588190349, −2.71488540180933286473424904123, −2.45743926949288468244277081776, −2.33068654746527686165677783329, −2.30883090086229616369517314445, −2.30617675650838253723635086167, −1.68738148471675665015981328022, −1.64587361621402961688956936471, −1.56372697768125446551306778271, −1.41903135605133277498661569868, −1.27309282765583189636570105611, −1.19105542465414532992862668459, −0.39143926442762275536399869671, −0.37173644232868418529930824677, −0.34400869778399379051097310846, 0.34400869778399379051097310846, 0.37173644232868418529930824677, 0.39143926442762275536399869671, 1.19105542465414532992862668459, 1.27309282765583189636570105611, 1.41903135605133277498661569868, 1.56372697768125446551306778271, 1.64587361621402961688956936471, 1.68738148471675665015981328022, 2.30617675650838253723635086167, 2.30883090086229616369517314445, 2.33068654746527686165677783329, 2.45743926949288468244277081776, 2.71488540180933286473424904123, 2.77814777577673496579588190349, 3.15188261646090351558425730707, 3.16697465462797393106678710151, 3.56428376748819566317412804000, 3.57495112561867474205829030122, 3.69165310339962767369560678964, 3.79803893725793442786446647294, 4.05960019480092712013542013190, 4.18499771242696888959210147481, 4.23071940256840709222236083897, 4.28796108798481282090230690788

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.