Properties

Label 12-182e6-1.1-c1e6-0-1
Degree $12$
Conductor $3.634\times 10^{13}$
Sign $1$
Analytic cond. $9.42086$
Root an. cond. $1.20551$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 3·4-s + 5·9-s − 6·12-s − 10·13-s + 6·16-s − 4·17-s − 6·23-s + 6·25-s − 6·27-s + 16·29-s − 15·36-s − 20·39-s + 16·43-s + 12·48-s − 3·49-s − 8·51-s + 30·52-s − 36·53-s + 10·61-s − 10·64-s + 12·68-s − 12·69-s + 12·75-s − 14·79-s − 22·81-s + 32·87-s + ⋯
L(s)  = 1  + 1.15·3-s − 3/2·4-s + 5/3·9-s − 1.73·12-s − 2.77·13-s + 3/2·16-s − 0.970·17-s − 1.25·23-s + 6/5·25-s − 1.15·27-s + 2.97·29-s − 5/2·36-s − 3.20·39-s + 2.43·43-s + 1.73·48-s − 3/7·49-s − 1.12·51-s + 4.16·52-s − 4.94·53-s + 1.28·61-s − 5/4·64-s + 1.45·68-s − 1.44·69-s + 1.38·75-s − 1.57·79-s − 2.44·81-s + 3.43·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 7^{6} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 7^{6} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{6} \cdot 7^{6} \cdot 13^{6}\)
Sign: $1$
Analytic conductor: \(9.42086\)
Root analytic conductor: \(1.20551\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{6} \cdot 7^{6} \cdot 13^{6} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.9541284696\)
\(L(\frac12)\) \(\approx\) \(0.9541284696\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 + T^{2} )^{3} \)
7 \( ( 1 + T^{2} )^{3} \)
13 \( 1 + 10 T + 61 T^{2} + 256 T^{3} + 61 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} \)
good3 \( ( 1 - T - T^{2} + 8 T^{3} - p T^{4} - p^{2} T^{5} + p^{3} T^{6} )^{2} \)
5 \( 1 - 6 T^{2} + 11 T^{4} - 44 T^{6} + 11 p^{2} T^{8} - 6 p^{4} T^{10} + p^{6} T^{12} \)
11 \( 1 - T^{2} + 251 T^{4} - 18 p T^{6} + 251 p^{2} T^{8} - p^{4} T^{10} + p^{6} T^{12} \)
17 \( ( 1 + 2 T + 7 T^{2} + 12 T^{3} + 7 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
19 \( 1 - 86 T^{2} + 3451 T^{4} - 82508 T^{6} + 3451 p^{2} T^{8} - 86 p^{4} T^{10} + p^{6} T^{12} \)
23 \( ( 1 + 3 T + 53 T^{2} + 106 T^{3} + 53 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
29 \( ( 1 - 8 T + 67 T^{2} - 288 T^{3} + 67 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
31 \( 1 - 121 T^{2} + 7651 T^{4} - 293638 T^{6} + 7651 p^{2} T^{8} - 121 p^{4} T^{10} + p^{6} T^{12} \)
37 \( 1 - 157 T^{2} + 11771 T^{4} - 540558 T^{6} + 11771 p^{2} T^{8} - 157 p^{4} T^{10} + p^{6} T^{12} \)
41 \( 1 - 133 T^{2} + 8499 T^{4} - 385678 T^{6} + 8499 p^{2} T^{8} - 133 p^{4} T^{10} + p^{6} T^{12} \)
43 \( ( 1 - 8 T + 105 T^{2} - 560 T^{3} + 105 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
47 \( 1 - 137 T^{2} + 8067 T^{4} - 352934 T^{6} + 8067 p^{2} T^{8} - 137 p^{4} T^{10} + p^{6} T^{12} \)
53 \( ( 1 + 6 T + p T^{2} )^{6} \)
59 \( 1 - 66 T^{2} + 10763 T^{4} - 439844 T^{6} + 10763 p^{2} T^{8} - 66 p^{4} T^{10} + p^{6} T^{12} \)
61 \( ( 1 - 5 T + 181 T^{2} - 608 T^{3} + 181 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
67 \( 1 - 289 T^{2} + 39707 T^{4} - 3327366 T^{6} + 39707 p^{2} T^{8} - 289 p^{4} T^{10} + p^{6} T^{12} \)
71 \( 1 - 90 T^{2} + 12959 T^{4} - 845804 T^{6} + 12959 p^{2} T^{8} - 90 p^{4} T^{10} + p^{6} T^{12} \)
73 \( 1 - 349 T^{2} + 54115 T^{4} - 4959166 T^{6} + 54115 p^{2} T^{8} - 349 p^{4} T^{10} + p^{6} T^{12} \)
79 \( ( 1 + 7 T + 149 T^{2} + 1254 T^{3} + 149 p T^{4} + 7 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
83 \( 1 - 146 T^{2} + 27387 T^{4} - 2110724 T^{6} + 27387 p^{2} T^{8} - 146 p^{4} T^{10} + p^{6} T^{12} \)
89 \( 1 - 218 T^{2} + 26655 T^{4} - 2647148 T^{6} + 26655 p^{2} T^{8} - 218 p^{4} T^{10} + p^{6} T^{12} \)
97 \( 1 - 397 T^{2} + 77507 T^{4} - 9352542 T^{6} + 77507 p^{2} T^{8} - 397 p^{4} T^{10} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.98439109258110554584549561599, −6.80358638778763450673321353460, −6.79232533876275435002204542431, −6.46904732687833584282634425541, −6.39132692428128971315530933615, −5.95069605969590117723883622220, −5.78873243066428453348730183154, −5.51621091837391478117587636996, −5.40075158968752373583365387633, −5.00254300325138673382042963811, −4.84047945375030087270046649682, −4.65569962924037068855490432691, −4.44185674711972895320346406952, −4.44158423768658849348999576109, −4.05953292986662558846931400662, −3.97414750535865299710012834716, −3.68606491323317005485094810225, −3.13493755301173827709043128841, −2.92365771622626610401191388108, −2.86526960208275699524225764029, −2.55841522382452795990575021666, −2.09140185575215345124592208722, −1.78688339710042113122248251601, −1.47175011651461004066187776997, −0.48312153935958298843761971831, 0.48312153935958298843761971831, 1.47175011651461004066187776997, 1.78688339710042113122248251601, 2.09140185575215345124592208722, 2.55841522382452795990575021666, 2.86526960208275699524225764029, 2.92365771622626610401191388108, 3.13493755301173827709043128841, 3.68606491323317005485094810225, 3.97414750535865299710012834716, 4.05953292986662558846931400662, 4.44158423768658849348999576109, 4.44185674711972895320346406952, 4.65569962924037068855490432691, 4.84047945375030087270046649682, 5.00254300325138673382042963811, 5.40075158968752373583365387633, 5.51621091837391478117587636996, 5.78873243066428453348730183154, 5.95069605969590117723883622220, 6.39132692428128971315530933615, 6.46904732687833584282634425541, 6.79232533876275435002204542431, 6.80358638778763450673321353460, 6.98439109258110554584549561599

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.