Properties

Label 182.2.d.b.155.4
Level $182$
Weight $2$
Character 182.155
Analytic conductor $1.453$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [182,2,Mod(155,182)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(182, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("182.155"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 182 = 2 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 182.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.45327731679\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.30647296.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 8x^{3} + 25x^{2} - 10x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 155.4
Root \(0.188470 - 0.188470i\) of defining polynomial
Character \(\chi\) \(=\) 182.155
Dual form 182.2.d.b.155.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -3.30590 q^{3} -1.00000 q^{4} +0.376939i q^{5} -3.30590i q^{6} -1.00000i q^{7} -1.00000i q^{8} +7.92896 q^{9} -0.376939 q^{10} -5.68284i q^{11} +3.30590 q^{12} +(-1.81153 - 3.11743i) q^{13} +1.00000 q^{14} -1.24612i q^{15} +1.00000 q^{16} -1.24612 q^{17} +7.92896i q^{18} +1.62306i q^{19} -0.376939i q^{20} +3.30590i q^{21} +5.68284 q^{22} -4.92896 q^{23} +3.30590i q^{24} +4.85792 q^{25} +(3.11743 - 1.81153i) q^{26} -16.2946 q^{27} +1.00000i q^{28} -4.61180 q^{29} +1.24612 q^{30} -5.68284i q^{31} +1.00000i q^{32} +18.7869i q^{33} -1.24612i q^{34} +0.376939 q^{35} -7.92896 q^{36} -6.92896i q^{37} -1.62306 q^{38} +(5.98873 + 10.3059i) q^{39} +0.376939 q^{40} -1.07104i q^{41} -3.30590 q^{42} +3.24612 q^{43} +5.68284i q^{44} +2.98873i q^{45} -4.92896i q^{46} -2.31716i q^{47} -3.30590 q^{48} -1.00000 q^{49} +4.85792i q^{50} +4.11955 q^{51} +(1.81153 + 3.11743i) q^{52} -6.00000 q^{53} -16.2946i q^{54} +2.14208 q^{55} -1.00000 q^{56} -5.36567i q^{57} -4.61180i q^{58} -11.4810i q^{59} +1.24612i q^{60} +5.30590 q^{61} +5.68284 q^{62} -7.92896i q^{63} -1.00000 q^{64} +(1.17508 - 0.682837i) q^{65} -18.7869 q^{66} +8.92896i q^{67} +1.24612 q^{68} +16.2946 q^{69} +0.376939i q^{70} +13.2236i q^{71} -7.92896i q^{72} +0.317163i q^{73} +6.92896 q^{74} -16.0598 q^{75} -1.62306i q^{76} -5.68284 q^{77} +(-10.3059 + 5.98873i) q^{78} +2.17508 q^{79} +0.376939i q^{80} +30.0815 q^{81} +1.07104 q^{82} +9.74261i q^{83} -3.30590i q^{84} -0.469712i q^{85} +3.24612i q^{86} +15.2461 q^{87} -5.68284 q^{88} +9.24612i q^{89} -2.98873 q^{90} +(-3.11743 + 1.81153i) q^{91} +4.92896 q^{92} +18.7869i q^{93} +2.31716 q^{94} -0.611795 q^{95} -3.30590i q^{96} -10.9290i q^{97} -1.00000i q^{98} -45.0590i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{3} - 6 q^{4} + 24 q^{9} - 4 q^{10} - 2 q^{12} - 10 q^{13} + 6 q^{14} + 6 q^{16} - 4 q^{17} + 14 q^{22} - 6 q^{23} - 18 q^{25} - 4 q^{26} - 34 q^{27} + 16 q^{29} + 4 q^{30} + 4 q^{35} - 24 q^{36}+ \cdots + 40 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/182\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(157\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −3.30590 −1.90866 −0.954330 0.298753i \(-0.903429\pi\)
−0.954330 + 0.298753i \(0.903429\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0.376939i 0.168572i 0.996442 + 0.0842861i \(0.0268610\pi\)
−0.996442 + 0.0842861i \(0.973139\pi\)
\(6\) 3.30590i 1.34963i
\(7\) 1.00000i 0.377964i
\(8\) 1.00000i 0.353553i
\(9\) 7.92896 2.64299
\(10\) −0.376939 −0.119199
\(11\) 5.68284i 1.71344i −0.515782 0.856720i \(-0.672499\pi\)
0.515782 0.856720i \(-0.327501\pi\)
\(12\) 3.30590 0.954330
\(13\) −1.81153 3.11743i −0.502428 0.864619i
\(14\) 1.00000 0.267261
\(15\) 1.24612i 0.321747i
\(16\) 1.00000 0.250000
\(17\) −1.24612 −0.302229 −0.151114 0.988516i \(-0.548286\pi\)
−0.151114 + 0.988516i \(0.548286\pi\)
\(18\) 7.92896i 1.86887i
\(19\) 1.62306i 0.372356i 0.982516 + 0.186178i \(0.0596101\pi\)
−0.982516 + 0.186178i \(0.940390\pi\)
\(20\) 0.376939i 0.0842861i
\(21\) 3.30590i 0.721406i
\(22\) 5.68284 1.21158
\(23\) −4.92896 −1.02776 −0.513879 0.857862i \(-0.671792\pi\)
−0.513879 + 0.857862i \(0.671792\pi\)
\(24\) 3.30590i 0.674814i
\(25\) 4.85792 0.971583
\(26\) 3.11743 1.81153i 0.611378 0.355270i
\(27\) −16.2946 −3.13590
\(28\) 1.00000i 0.188982i
\(29\) −4.61180 −0.856389 −0.428194 0.903687i \(-0.640850\pi\)
−0.428194 + 0.903687i \(0.640850\pi\)
\(30\) 1.24612 0.227510
\(31\) 5.68284i 1.02067i −0.859976 0.510334i \(-0.829522\pi\)
0.859976 0.510334i \(-0.170478\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 18.7869i 3.27038i
\(34\) 1.24612i 0.213708i
\(35\) 0.376939 0.0637143
\(36\) −7.92896 −1.32149
\(37\) 6.92896i 1.13911i −0.821952 0.569557i \(-0.807115\pi\)
0.821952 0.569557i \(-0.192885\pi\)
\(38\) −1.62306 −0.263295
\(39\) 5.98873 + 10.3059i 0.958965 + 1.65026i
\(40\) 0.376939 0.0595993
\(41\) 1.07104i 0.167269i −0.996497 0.0836343i \(-0.973347\pi\)
0.996497 0.0836343i \(-0.0266528\pi\)
\(42\) −3.30590 −0.510111
\(43\) 3.24612 0.495029 0.247514 0.968884i \(-0.420386\pi\)
0.247514 + 0.968884i \(0.420386\pi\)
\(44\) 5.68284i 0.856720i
\(45\) 2.98873i 0.445534i
\(46\) 4.92896i 0.726735i
\(47\) 2.31716i 0.337993i −0.985617 0.168997i \(-0.945947\pi\)
0.985617 0.168997i \(-0.0540527\pi\)
\(48\) −3.30590 −0.477165
\(49\) −1.00000 −0.142857
\(50\) 4.85792i 0.687013i
\(51\) 4.11955 0.576853
\(52\) 1.81153 + 3.11743i 0.251214 + 0.432309i
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 16.2946i 2.21742i
\(55\) 2.14208 0.288838
\(56\) −1.00000 −0.133631
\(57\) 5.36567i 0.710701i
\(58\) 4.61180i 0.605558i
\(59\) 11.4810i 1.49470i −0.664433 0.747348i \(-0.731327\pi\)
0.664433 0.747348i \(-0.268673\pi\)
\(60\) 1.24612i 0.160874i
\(61\) 5.30590 0.679351 0.339675 0.940543i \(-0.389683\pi\)
0.339675 + 0.940543i \(0.389683\pi\)
\(62\) 5.68284 0.721721
\(63\) 7.92896i 0.998955i
\(64\) −1.00000 −0.125000
\(65\) 1.17508 0.682837i 0.145751 0.0846955i
\(66\) −18.7869 −2.31250
\(67\) 8.92896i 1.09085i 0.838161 + 0.545423i \(0.183631\pi\)
−0.838161 + 0.545423i \(0.816369\pi\)
\(68\) 1.24612 0.151114
\(69\) 16.2946 1.96164
\(70\) 0.376939i 0.0450528i
\(71\) 13.2236i 1.56935i 0.619906 + 0.784676i \(0.287171\pi\)
−0.619906 + 0.784676i \(0.712829\pi\)
\(72\) 7.92896i 0.934437i
\(73\) 0.317163i 0.0371212i 0.999828 + 0.0185606i \(0.00590836\pi\)
−0.999828 + 0.0185606i \(0.994092\pi\)
\(74\) 6.92896 0.805475
\(75\) −16.0598 −1.85442
\(76\) 1.62306i 0.186178i
\(77\) −5.68284 −0.647619
\(78\) −10.3059 + 5.98873i −1.16691 + 0.678091i
\(79\) 2.17508 0.244716 0.122358 0.992486i \(-0.460954\pi\)
0.122358 + 0.992486i \(0.460954\pi\)
\(80\) 0.376939i 0.0421431i
\(81\) 30.0815 3.34239
\(82\) 1.07104 0.118277
\(83\) 9.74261i 1.06939i 0.845045 + 0.534695i \(0.179574\pi\)
−0.845045 + 0.534695i \(0.820426\pi\)
\(84\) 3.30590i 0.360703i
\(85\) 0.469712i 0.0509474i
\(86\) 3.24612i 0.350038i
\(87\) 15.2461 1.63456
\(88\) −5.68284 −0.605792
\(89\) 9.24612i 0.980087i 0.871698 + 0.490043i \(0.163019\pi\)
−0.871698 + 0.490043i \(0.836981\pi\)
\(90\) −2.98873 −0.315040
\(91\) −3.11743 + 1.81153i −0.326795 + 0.189900i
\(92\) 4.92896 0.513879
\(93\) 18.7869i 1.94811i
\(94\) 2.31716 0.238997
\(95\) −0.611795 −0.0627688
\(96\) 3.30590i 0.337407i
\(97\) 10.9290i 1.10967i −0.831961 0.554834i \(-0.812782\pi\)
0.831961 0.554834i \(-0.187218\pi\)
\(98\) 1.00000i 0.101015i
\(99\) 45.0590i 4.52860i
\(100\) −4.85792 −0.485792
\(101\) −3.44798 −0.343087 −0.171543 0.985177i \(-0.554875\pi\)
−0.171543 + 0.985177i \(0.554875\pi\)
\(102\) 4.11955i 0.407896i
\(103\) 7.24612 0.713982 0.356991 0.934108i \(-0.383803\pi\)
0.356991 + 0.934108i \(0.383803\pi\)
\(104\) −3.11743 + 1.81153i −0.305689 + 0.177635i
\(105\) −1.24612 −0.121609
\(106\) 6.00000i 0.582772i
\(107\) −9.85792 −0.953001 −0.476500 0.879174i \(-0.658095\pi\)
−0.476500 + 0.879174i \(0.658095\pi\)
\(108\) 16.2946 1.56795
\(109\) 11.2236i 1.07502i −0.843256 0.537512i \(-0.819364\pi\)
0.843256 0.537512i \(-0.180636\pi\)
\(110\) 2.14208i 0.204240i
\(111\) 22.9064i 2.17418i
\(112\) 1.00000i 0.0944911i
\(113\) −4.92896 −0.463677 −0.231839 0.972754i \(-0.574474\pi\)
−0.231839 + 0.972754i \(0.574474\pi\)
\(114\) 5.36567 0.502541
\(115\) 1.85792i 0.173252i
\(116\) 4.61180 0.428194
\(117\) −14.3635 24.7180i −1.32791 2.28518i
\(118\) 11.4810 1.05691
\(119\) 1.24612i 0.114232i
\(120\) −1.24612 −0.113755
\(121\) −21.2946 −1.93588
\(122\) 5.30590i 0.480373i
\(123\) 3.54075i 0.319259i
\(124\) 5.68284i 0.510334i
\(125\) 3.71583i 0.332354i
\(126\) 7.92896 0.706368
\(127\) 8.29463 0.736030 0.368015 0.929820i \(-0.380038\pi\)
0.368015 + 0.929820i \(0.380038\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −10.7313 −0.944842
\(130\) 0.682837 + 1.17508i 0.0598887 + 0.103061i
\(131\) 16.3544 1.42889 0.714446 0.699691i \(-0.246679\pi\)
0.714446 + 0.699691i \(0.246679\pi\)
\(132\) 18.7869i 1.63519i
\(133\) 1.62306 0.140737
\(134\) −8.92896 −0.771345
\(135\) 6.14208i 0.528626i
\(136\) 1.24612i 0.106854i
\(137\) 13.2236i 1.12977i −0.825170 0.564884i \(-0.808921\pi\)
0.825170 0.564884i \(-0.191079\pi\)
\(138\) 16.2946i 1.38709i
\(139\) 1.62306 0.137666 0.0688331 0.997628i \(-0.478072\pi\)
0.0688331 + 0.997628i \(0.478072\pi\)
\(140\) −0.376939 −0.0318572
\(141\) 7.66030i 0.645114i
\(142\) −13.2236 −1.10970
\(143\) −17.7158 + 10.2946i −1.48147 + 0.860880i
\(144\) 7.92896 0.660747
\(145\) 1.73837i 0.144363i
\(146\) −0.317163 −0.0262486
\(147\) 3.30590 0.272666
\(148\) 6.92896i 0.569557i
\(149\) 9.54075i 0.781609i −0.920474 0.390804i \(-0.872197\pi\)
0.920474 0.390804i \(-0.127803\pi\)
\(150\) 16.0598i 1.31128i
\(151\) 2.75388i 0.224107i 0.993702 + 0.112054i \(0.0357429\pi\)
−0.993702 + 0.112054i \(0.964257\pi\)
\(152\) 1.62306 0.131648
\(153\) −9.88045 −0.798787
\(154\) 5.68284i 0.457936i
\(155\) 2.14208 0.172056
\(156\) −5.98873 10.3059i −0.479482 0.825132i
\(157\) 22.5295 1.79805 0.899024 0.437898i \(-0.144277\pi\)
0.899024 + 0.437898i \(0.144277\pi\)
\(158\) 2.17508i 0.173040i
\(159\) 19.8354 1.57305
\(160\) −0.376939 −0.0297996
\(161\) 4.92896i 0.388456i
\(162\) 30.0815i 2.36343i
\(163\) 8.46971i 0.663399i 0.943385 + 0.331700i \(0.107622\pi\)
−0.943385 + 0.331700i \(0.892378\pi\)
\(164\) 1.07104i 0.0836343i
\(165\) −7.08151 −0.551295
\(166\) −9.74261 −0.756173
\(167\) 5.97747i 0.462550i −0.972888 0.231275i \(-0.925710\pi\)
0.972888 0.231275i \(-0.0742898\pi\)
\(168\) 3.30590 0.255056
\(169\) −6.43671 + 11.2946i −0.495132 + 0.868818i
\(170\) 0.469712 0.0360253
\(171\) 12.8692i 0.984131i
\(172\) −3.24612 −0.247514
\(173\) −0.846651 −0.0643697 −0.0321848 0.999482i \(-0.510247\pi\)
−0.0321848 + 0.999482i \(0.510247\pi\)
\(174\) 15.2461i 1.15581i
\(175\) 4.85792i 0.367224i
\(176\) 5.68284i 0.428360i
\(177\) 37.9549i 2.85287i
\(178\) −9.24612 −0.693026
\(179\) −18.7313 −1.40005 −0.700023 0.714120i \(-0.746827\pi\)
−0.700023 + 0.714120i \(0.746827\pi\)
\(180\) 2.98873i 0.222767i
\(181\) −17.6561 −1.31236 −0.656182 0.754602i \(-0.727830\pi\)
−0.656182 + 0.754602i \(0.727830\pi\)
\(182\) −1.81153 3.11743i −0.134280 0.231079i
\(183\) −17.5408 −1.29665
\(184\) 4.92896i 0.363368i
\(185\) 2.61180 0.192023
\(186\) −18.7869 −1.37752
\(187\) 7.08151i 0.517851i
\(188\) 2.31716i 0.168997i
\(189\) 16.2946i 1.18526i
\(190\) 0.611795i 0.0443843i
\(191\) 16.6118 1.20199 0.600994 0.799254i \(-0.294772\pi\)
0.600994 + 0.799254i \(0.294772\pi\)
\(192\) 3.30590 0.238583
\(193\) 3.85792i 0.277699i 0.990313 + 0.138849i \(0.0443404\pi\)
−0.990313 + 0.138849i \(0.955660\pi\)
\(194\) 10.9290 0.784653
\(195\) −3.88470 + 2.25739i −0.278189 + 0.161655i
\(196\) 1.00000 0.0714286
\(197\) 6.17508i 0.439956i 0.975505 + 0.219978i \(0.0705986\pi\)
−0.975505 + 0.219978i \(0.929401\pi\)
\(198\) 45.0590 3.20220
\(199\) −4.75388 −0.336993 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(200\) 4.85792i 0.343507i
\(201\) 29.5182i 2.08205i
\(202\) 3.44798i 0.242599i
\(203\) 4.61180i 0.323685i
\(204\) −4.11955 −0.288426
\(205\) 0.403717 0.0281968
\(206\) 7.24612i 0.504861i
\(207\) −39.0815 −2.71635
\(208\) −1.81153 3.11743i −0.125607 0.216155i
\(209\) 9.22359 0.638009
\(210\) 1.24612i 0.0859906i
\(211\) 27.7158 1.90804 0.954018 0.299748i \(-0.0969027\pi\)
0.954018 + 0.299748i \(0.0969027\pi\)
\(212\) 6.00000 0.412082
\(213\) 43.7158i 2.99536i
\(214\) 9.85792i 0.673873i
\(215\) 1.22359i 0.0834482i
\(216\) 16.2946i 1.10871i
\(217\) −5.68284 −0.385776
\(218\) 11.2236 0.760157
\(219\) 1.04851i 0.0708517i
\(220\) −2.14208 −0.144419
\(221\) 2.25739 + 3.88470i 0.151848 + 0.261313i
\(222\) −22.9064 −1.53738
\(223\) 8.29463i 0.555450i −0.960661 0.277725i \(-0.910420\pi\)
0.960661 0.277725i \(-0.0895803\pi\)
\(224\) 1.00000 0.0668153
\(225\) 38.5182 2.56788
\(226\) 4.92896i 0.327869i
\(227\) 0.234856i 0.0155879i 0.999970 + 0.00779397i \(0.00248092\pi\)
−0.999970 + 0.00779397i \(0.997519\pi\)
\(228\) 5.36567i 0.355350i
\(229\) 19.4584i 1.28585i 0.765929 + 0.642925i \(0.222279\pi\)
−0.765929 + 0.642925i \(0.777721\pi\)
\(230\) 1.85792 0.122507
\(231\) 18.7869 1.23609
\(232\) 4.61180i 0.302779i
\(233\) 20.1525 1.32024 0.660119 0.751161i \(-0.270506\pi\)
0.660119 + 0.751161i \(0.270506\pi\)
\(234\) 24.7180 14.3635i 1.61586 0.938975i
\(235\) 0.873429 0.0569763
\(236\) 11.4810i 0.747348i
\(237\) −7.19059 −0.467079
\(238\) −1.24612 −0.0807741
\(239\) 12.9620i 0.838439i −0.907885 0.419220i \(-0.862304\pi\)
0.907885 0.419220i \(-0.137696\pi\)
\(240\) 1.24612i 0.0804368i
\(241\) 8.73135i 0.562435i −0.959644 0.281218i \(-0.909262\pi\)
0.959644 0.281218i \(-0.0907383\pi\)
\(242\) 21.2946i 1.36887i
\(243\) −50.5625 −3.24358
\(244\) −5.30590 −0.339675
\(245\) 0.376939i 0.0240818i
\(246\) −3.54075 −0.225750
\(247\) 5.05978 2.94022i 0.321946 0.187082i
\(248\) −5.68284 −0.360860
\(249\) 32.2081i 2.04110i
\(250\) −3.71583 −0.235010
\(251\) 5.04426 0.318391 0.159196 0.987247i \(-0.449110\pi\)
0.159196 + 0.987247i \(0.449110\pi\)
\(252\) 7.92896i 0.499477i
\(253\) 28.0105i 1.76100i
\(254\) 8.29463i 0.520451i
\(255\) 1.55282i 0.0972413i
\(256\) 1.00000 0.0625000
\(257\) 23.2236 1.44865 0.724324 0.689460i \(-0.242152\pi\)
0.724324 + 0.689460i \(0.242152\pi\)
\(258\) 10.7313i 0.668104i
\(259\) −6.92896 −0.430545
\(260\) −1.17508 + 0.682837i −0.0728754 + 0.0423477i
\(261\) −36.5667 −2.26342
\(262\) 16.3544i 1.01038i
\(263\) −11.1040 −0.684704 −0.342352 0.939572i \(-0.611224\pi\)
−0.342352 + 0.939572i \(0.611224\pi\)
\(264\) 18.7869 1.15625
\(265\) 2.26163i 0.138931i
\(266\) 1.62306i 0.0995163i
\(267\) 30.5667i 1.87065i
\(268\) 8.92896i 0.545423i
\(269\) 11.5675 0.705285 0.352642 0.935758i \(-0.385283\pi\)
0.352642 + 0.935758i \(0.385283\pi\)
\(270\) 6.14208 0.373795
\(271\) 26.1525i 1.58865i −0.607490 0.794327i \(-0.707824\pi\)
0.607490 0.794327i \(-0.292176\pi\)
\(272\) −1.24612 −0.0755572
\(273\) 10.3059 5.98873i 0.623741 0.362455i
\(274\) 13.2236 0.798866
\(275\) 27.6067i 1.66475i
\(276\) −16.2946 −0.980822
\(277\) −23.2236 −1.39537 −0.697685 0.716405i \(-0.745787\pi\)
−0.697685 + 0.716405i \(0.745787\pi\)
\(278\) 1.62306i 0.0973447i
\(279\) 45.0590i 2.69761i
\(280\) 0.376939i 0.0225264i
\(281\) 17.2236i 1.02747i −0.857948 0.513737i \(-0.828261\pi\)
0.857948 0.513737i \(-0.171739\pi\)
\(282\) −7.66030 −0.456165
\(283\) 19.7756 1.17554 0.587769 0.809029i \(-0.300006\pi\)
0.587769 + 0.809029i \(0.300006\pi\)
\(284\) 13.2236i 0.784676i
\(285\) 2.02253 0.119804
\(286\) −10.2946 17.7158i −0.608734 1.04756i
\(287\) −1.07104 −0.0632216
\(288\) 7.92896i 0.467218i
\(289\) −15.4472 −0.908658
\(290\) 1.73837 0.102080
\(291\) 36.1300i 2.11798i
\(292\) 0.317163i 0.0185606i
\(293\) 1.13082i 0.0660630i 0.999454 + 0.0330315i \(0.0105162\pi\)
−0.999454 + 0.0330315i \(0.989484\pi\)
\(294\) 3.30590i 0.192804i
\(295\) 4.32763 0.251964
\(296\) −6.92896 −0.402738
\(297\) 92.5997i 5.37318i
\(298\) 9.54075 0.552681
\(299\) 8.92896 + 15.3657i 0.516375 + 0.888620i
\(300\) 16.0598 0.927212
\(301\) 3.24612i 0.187103i
\(302\) −2.75388 −0.158468
\(303\) 11.3987 0.654837
\(304\) 1.62306i 0.0930889i
\(305\) 2.00000i 0.114520i
\(306\) 9.88045i 0.564828i
\(307\) 30.9662i 1.76733i 0.468116 + 0.883667i \(0.344933\pi\)
−0.468116 + 0.883667i \(0.655067\pi\)
\(308\) 5.68284 0.323810
\(309\) −23.9549 −1.36275
\(310\) 2.14208i 0.121662i
\(311\) −9.50776 −0.539135 −0.269568 0.962981i \(-0.586881\pi\)
−0.269568 + 0.962981i \(0.586881\pi\)
\(312\) 10.3059 5.98873i 0.583457 0.339045i
\(313\) 3.38820 0.191513 0.0957563 0.995405i \(-0.469473\pi\)
0.0957563 + 0.995405i \(0.469473\pi\)
\(314\) 22.5295i 1.27141i
\(315\) 2.98873 0.168396
\(316\) −2.17508 −0.122358
\(317\) 29.5408i 1.65917i −0.558377 0.829587i \(-0.688576\pi\)
0.558377 0.829587i \(-0.311424\pi\)
\(318\) 19.8354i 1.11231i
\(319\) 26.2081i 1.46737i
\(320\) 0.376939i 0.0210715i
\(321\) 32.5893 1.81896
\(322\) −4.92896 −0.274680
\(323\) 2.02253i 0.112537i
\(324\) −30.0815 −1.67119
\(325\) −8.80026 15.1442i −0.488151 0.840049i
\(326\) −8.46971 −0.469094
\(327\) 37.1040i 2.05186i
\(328\) −1.07104 −0.0591384
\(329\) −2.31716 −0.127749
\(330\) 7.08151i 0.389824i
\(331\) 0.175080i 0.00962329i 0.999988 + 0.00481164i \(0.00153160\pi\)
−0.999988 + 0.00481164i \(0.998468\pi\)
\(332\) 9.74261i 0.534695i
\(333\) 54.9394i 3.01066i
\(334\) 5.97747 0.327073
\(335\) −3.36567 −0.183886
\(336\) 3.30590i 0.180351i
\(337\) 19.3761 1.05549 0.527743 0.849404i \(-0.323039\pi\)
0.527743 + 0.849404i \(0.323039\pi\)
\(338\) −11.2946 6.43671i −0.614347 0.350111i
\(339\) 16.2946 0.885003
\(340\) 0.469712i 0.0254737i
\(341\) −32.2946 −1.74885
\(342\) −12.8692 −0.695886
\(343\) 1.00000i 0.0539949i
\(344\) 3.24612i 0.175019i
\(345\) 6.14208i 0.330679i
\(346\) 0.846651i 0.0455162i
\(347\) 24.4697 1.31360 0.656801 0.754064i \(-0.271909\pi\)
0.656801 + 0.754064i \(0.271909\pi\)
\(348\) −15.2461 −0.817278
\(349\) 11.8622i 0.634967i 0.948264 + 0.317484i \(0.102838\pi\)
−0.948264 + 0.317484i \(0.897162\pi\)
\(350\) 4.85792 0.259667
\(351\) 29.5182 + 50.7973i 1.57557 + 2.71136i
\(352\) 5.68284 0.302896
\(353\) 1.82492i 0.0971307i −0.998820 0.0485653i \(-0.984535\pi\)
0.998820 0.0485653i \(-0.0154649\pi\)
\(354\) −37.9549 −2.01728
\(355\) −4.98449 −0.264549
\(356\) 9.24612i 0.490043i
\(357\) 4.11955i 0.218030i
\(358\) 18.7313i 0.989982i
\(359\) 7.62731i 0.402554i −0.979534 0.201277i \(-0.935491\pi\)
0.979534 0.201277i \(-0.0645091\pi\)
\(360\) 2.98873 0.157520
\(361\) 16.3657 0.861351
\(362\) 17.6561i 0.927982i
\(363\) 70.3979 3.69493
\(364\) 3.11743 1.81153i 0.163398 0.0949500i
\(365\) −0.119551 −0.00625760
\(366\) 17.5408i 0.916870i
\(367\) 17.2236 0.899064 0.449532 0.893264i \(-0.351591\pi\)
0.449532 + 0.893264i \(0.351591\pi\)
\(368\) −4.92896 −0.256940
\(369\) 8.49224i 0.442089i
\(370\) 2.61180i 0.135781i
\(371\) 6.00000i 0.311504i
\(372\) 18.7869i 0.974054i
\(373\) −8.77641 −0.454425 −0.227213 0.973845i \(-0.572961\pi\)
−0.227213 + 0.973845i \(0.572961\pi\)
\(374\) −7.08151 −0.366176
\(375\) 12.2842i 0.634352i
\(376\) −2.31716 −0.119499
\(377\) 8.35441 + 14.3769i 0.430274 + 0.740450i
\(378\) −16.2946 −0.838105
\(379\) 17.7384i 0.911159i 0.890195 + 0.455579i \(0.150568\pi\)
−0.890195 + 0.455579i \(0.849432\pi\)
\(380\) 0.611795 0.0313844
\(381\) −27.4212 −1.40483
\(382\) 16.6118i 0.849933i
\(383\) 32.7643i 1.67418i −0.547065 0.837090i \(-0.684255\pi\)
0.547065 0.837090i \(-0.315745\pi\)
\(384\) 3.30590i 0.168703i
\(385\) 2.14208i 0.109171i
\(386\) −3.85792 −0.196363
\(387\) 25.7384 1.30835
\(388\) 10.9290i 0.554834i
\(389\) 12.2616 0.621690 0.310845 0.950461i \(-0.399388\pi\)
0.310845 + 0.950461i \(0.399388\pi\)
\(390\) −2.25739 3.88470i −0.114307 0.196709i
\(391\) 6.14208 0.310618
\(392\) 1.00000i 0.0505076i
\(393\) −54.0660 −2.72727
\(394\) −6.17508 −0.311096
\(395\) 0.819873i 0.0412523i
\(396\) 45.0590i 2.26430i
\(397\) 22.5850i 1.13351i −0.823887 0.566755i \(-0.808199\pi\)
0.823887 0.566755i \(-0.191801\pi\)
\(398\) 4.75388i 0.238290i
\(399\) −5.36567 −0.268620
\(400\) 4.85792 0.242896
\(401\) 27.8579i 1.39116i 0.718450 + 0.695579i \(0.244852\pi\)
−0.718450 + 0.695579i \(0.755148\pi\)
\(402\) 29.5182 1.47224
\(403\) −17.7158 + 10.2946i −0.882489 + 0.512812i
\(404\) 3.44798 0.171543
\(405\) 11.3389i 0.563434i
\(406\) −4.61180 −0.228880
\(407\) −39.3761 −1.95180
\(408\) 4.11955i 0.203948i
\(409\) 16.7313i 0.827312i 0.910433 + 0.413656i \(0.135748\pi\)
−0.910433 + 0.413656i \(0.864252\pi\)
\(410\) 0.403717i 0.0199382i
\(411\) 43.7158i 2.15634i
\(412\) −7.24612 −0.356991
\(413\) −11.4810 −0.564942
\(414\) 39.0815i 1.92075i
\(415\) −3.67237 −0.180270
\(416\) 3.11743 1.81153i 0.152844 0.0888176i
\(417\) −5.36567 −0.262758
\(418\) 9.22359i 0.451141i
\(419\) −11.7756 −0.575276 −0.287638 0.957739i \(-0.592870\pi\)
−0.287638 + 0.957739i \(0.592870\pi\)
\(420\) 1.24612 0.0608045
\(421\) 12.3172i 0.600302i 0.953892 + 0.300151i \(0.0970370\pi\)
−0.953892 + 0.300151i \(0.902963\pi\)
\(422\) 27.7158i 1.34919i
\(423\) 18.3727i 0.893311i
\(424\) 6.00000i 0.291386i
\(425\) −6.05356 −0.293641
\(426\) 43.7158 2.11804
\(427\) 5.30590i 0.256770i
\(428\) 9.85792 0.476500
\(429\) 58.5667 34.0330i 2.82763 1.64313i
\(430\) −1.22359 −0.0590068
\(431\) 0.611795i 0.0294691i 0.999891 + 0.0147346i \(0.00469033\pi\)
−0.999891 + 0.0147346i \(0.995310\pi\)
\(432\) −16.2946 −0.783976
\(433\) −25.2011 −1.21109 −0.605543 0.795813i \(-0.707044\pi\)
−0.605543 + 0.795813i \(0.707044\pi\)
\(434\) 5.68284i 0.272785i
\(435\) 5.74686i 0.275541i
\(436\) 11.2236i 0.537512i
\(437\) 8.00000i 0.382692i
\(438\) 1.04851 0.0500997
\(439\) −36.9394 −1.76302 −0.881511 0.472163i \(-0.843473\pi\)
−0.881511 + 0.472163i \(0.843473\pi\)
\(440\) 2.14208i 0.102120i
\(441\) −7.92896 −0.377569
\(442\) −3.88470 + 2.25739i −0.184776 + 0.107373i
\(443\) 2.77641 0.131911 0.0659556 0.997823i \(-0.478990\pi\)
0.0659556 + 0.997823i \(0.478990\pi\)
\(444\) 22.9064i 1.08709i
\(445\) −3.48522 −0.165215
\(446\) 8.29463 0.392762
\(447\) 31.5408i 1.49183i
\(448\) 1.00000i 0.0472456i
\(449\) 4.35016i 0.205297i −0.994718 0.102648i \(-0.967268\pi\)
0.994718 0.102648i \(-0.0327317\pi\)
\(450\) 38.5182i 1.81577i
\(451\) −6.08655 −0.286605
\(452\) 4.92896 0.231839
\(453\) 9.10404i 0.427745i
\(454\) −0.234856 −0.0110223
\(455\) −0.682837 1.17508i −0.0320119 0.0550886i
\(456\) −5.36567 −0.251271
\(457\) 29.6048i 1.38485i −0.721488 0.692426i \(-0.756542\pi\)
0.721488 0.692426i \(-0.243458\pi\)
\(458\) −19.4584 −0.909233
\(459\) 20.3051 0.947761
\(460\) 1.85792i 0.0866258i
\(461\) 30.2349i 1.40818i 0.710112 + 0.704089i \(0.248644\pi\)
−0.710112 + 0.704089i \(0.751356\pi\)
\(462\) 18.7869i 0.874045i
\(463\) 4.87343i 0.226487i −0.993567 0.113244i \(-0.963876\pi\)
0.993567 0.113244i \(-0.0361241\pi\)
\(464\) −4.61180 −0.214097
\(465\) −7.08151 −0.328397
\(466\) 20.1525i 0.933549i
\(467\) 15.8847 0.735056 0.367528 0.930012i \(-0.380204\pi\)
0.367528 + 0.930012i \(0.380204\pi\)
\(468\) 14.3635 + 24.7180i 0.663955 + 1.14259i
\(469\) 8.92896 0.412301
\(470\) 0.873429i 0.0402883i
\(471\) −74.4802 −3.43187
\(472\) −11.4810 −0.528455
\(473\) 18.4472i 0.848202i
\(474\) 7.19059i 0.330275i
\(475\) 7.88470i 0.361775i
\(476\) 1.24612i 0.0571159i
\(477\) −47.5738 −2.17825
\(478\) 12.9620 0.592866
\(479\) 3.53029i 0.161303i 0.996742 + 0.0806515i \(0.0257001\pi\)
−0.996742 + 0.0806515i \(0.974300\pi\)
\(480\) 1.24612 0.0568774
\(481\) −21.6005 + 12.5520i −0.984899 + 0.572323i
\(482\) 8.73135 0.397702
\(483\) 16.2946i 0.741431i
\(484\) 21.2946 0.967938
\(485\) 4.11955 0.187059
\(486\) 50.5625i 2.29356i
\(487\) 16.6118i 0.752752i −0.926467 0.376376i \(-0.877170\pi\)
0.926467 0.376376i \(-0.122830\pi\)
\(488\) 5.30590i 0.240187i
\(489\) 28.0000i 1.26620i
\(490\) 0.376939 0.0170284
\(491\) 10.3812 0.468496 0.234248 0.972177i \(-0.424737\pi\)
0.234248 + 0.972177i \(0.424737\pi\)
\(492\) 3.54075i 0.159629i
\(493\) 5.74686 0.258826
\(494\) 2.94022 + 5.05978i 0.132287 + 0.227650i
\(495\) 16.9845 0.763396
\(496\) 5.68284i 0.255167i
\(497\) 13.2236 0.593159
\(498\) 32.2081 1.44328
\(499\) 9.80239i 0.438815i 0.975633 + 0.219408i \(0.0704124\pi\)
−0.975633 + 0.219408i \(0.929588\pi\)
\(500\) 3.71583i 0.166177i
\(501\) 19.7609i 0.882852i
\(502\) 5.04426i 0.225136i
\(503\) −12.3502 −0.550666 −0.275333 0.961349i \(-0.588788\pi\)
−0.275333 + 0.961349i \(0.588788\pi\)
\(504\) −7.92896 −0.353184
\(505\) 1.29968i 0.0578349i
\(506\) −28.0105 −1.24522
\(507\) 21.2791 37.3389i 0.945039 1.65828i
\(508\) −8.29463 −0.368015
\(509\) 10.1153i 0.448353i 0.974549 + 0.224176i \(0.0719692\pi\)
−0.974549 + 0.224176i \(0.928031\pi\)
\(510\) −1.55282 −0.0687600
\(511\) 0.317163 0.0140305
\(512\) 1.00000i 0.0441942i
\(513\) 26.4472i 1.16767i
\(514\) 23.2236i 1.02435i
\(515\) 2.73135i 0.120357i
\(516\) 10.7313 0.472421
\(517\) −13.1681 −0.579131
\(518\) 6.92896i 0.304441i
\(519\) 2.79894 0.122860
\(520\) −0.682837 1.17508i −0.0299444 0.0515307i
\(521\) −32.6118 −1.42875 −0.714374 0.699764i \(-0.753289\pi\)
−0.714374 + 0.699764i \(0.753289\pi\)
\(522\) 36.5667i 1.60048i
\(523\) 32.4099 1.41719 0.708594 0.705617i \(-0.249330\pi\)
0.708594 + 0.705617i \(0.249330\pi\)
\(524\) −16.3544 −0.714446
\(525\) 16.0598i 0.700906i
\(526\) 11.1040i 0.484159i
\(527\) 7.08151i 0.308475i
\(528\) 18.7869i 0.817594i
\(529\) 1.29463 0.0562883
\(530\) 2.26163 0.0982391
\(531\) 91.0322i 3.95046i
\(532\) −1.62306 −0.0703686
\(533\) −3.33889 + 1.94022i −0.144624 + 0.0840404i
\(534\) 30.5667 1.32275
\(535\) 3.71583i 0.160650i
\(536\) 8.92896 0.385672
\(537\) 61.9239 2.67221
\(538\) 11.5675i 0.498712i
\(539\) 5.68284i 0.244777i
\(540\) 6.14208i 0.264313i
\(541\) 23.4542i 1.00837i −0.863594 0.504187i \(-0.831792\pi\)
0.863594 0.504187i \(-0.168208\pi\)
\(542\) 26.1525 1.12335
\(543\) 58.3691 2.50486
\(544\) 1.24612i 0.0534270i
\(545\) 4.23061 0.181219
\(546\) 5.98873 + 10.3059i 0.256294 + 0.441052i
\(547\) 13.3882 0.572438 0.286219 0.958164i \(-0.407601\pi\)
0.286219 + 0.958164i \(0.407601\pi\)
\(548\) 13.2236i 0.564884i
\(549\) 42.0702 1.79551
\(550\) 27.6067 1.17716
\(551\) 7.48522i 0.318881i
\(552\) 16.2946i 0.693546i
\(553\) 2.17508i 0.0924938i
\(554\) 23.2236i 0.986676i
\(555\) −8.63433 −0.366507
\(556\) −1.62306 −0.0688331
\(557\) 23.0485i 0.976597i 0.872677 + 0.488298i \(0.162382\pi\)
−0.872677 + 0.488298i \(0.837618\pi\)
\(558\) 45.0590 1.90750
\(559\) −5.88045 10.1196i −0.248716 0.428011i
\(560\) 0.376939 0.0159286
\(561\) 23.4107i 0.988402i
\(562\) 17.2236 0.726533
\(563\) 0.858717 0.0361906 0.0180953 0.999836i \(-0.494240\pi\)
0.0180953 + 0.999836i \(0.494240\pi\)
\(564\) 7.66030i 0.322557i
\(565\) 1.85792i 0.0781632i
\(566\) 19.7756i 0.831231i
\(567\) 30.0815i 1.26330i
\(568\) 13.2236 0.554850
\(569\) −3.31014 −0.138768 −0.0693842 0.997590i \(-0.522103\pi\)
−0.0693842 + 0.997590i \(0.522103\pi\)
\(570\) 2.02253i 0.0847145i
\(571\) −21.6273 −0.905075 −0.452537 0.891745i \(-0.649481\pi\)
−0.452537 + 0.891745i \(0.649481\pi\)
\(572\) 17.7158 10.2946i 0.740736 0.430440i
\(573\) −54.9169 −2.29419
\(574\) 1.07104i 0.0447044i
\(575\) −23.9445 −0.998553
\(576\) −7.92896 −0.330373
\(577\) 9.48522i 0.394875i 0.980315 + 0.197438i \(0.0632620\pi\)
−0.980315 + 0.197438i \(0.936738\pi\)
\(578\) 15.4472i 0.642518i
\(579\) 12.7539i 0.530033i
\(580\) 1.73837i 0.0721817i
\(581\) 9.74261 0.404192
\(582\) −36.1300 −1.49764
\(583\) 34.0970i 1.41215i
\(584\) 0.317163 0.0131243
\(585\) 9.31716 5.41418i 0.385217 0.223849i
\(586\) −1.13082 −0.0467136
\(587\) 36.4204i 1.50323i −0.659602 0.751615i \(-0.729275\pi\)
0.659602 0.751615i \(-0.270725\pi\)
\(588\) −3.30590 −0.136333
\(589\) 9.22359 0.380051
\(590\) 4.32763i 0.178166i
\(591\) 20.4142i 0.839727i
\(592\) 6.92896i 0.284778i
\(593\) 21.4852i 0.882292i 0.897435 + 0.441146i \(0.145428\pi\)
−0.897435 + 0.441146i \(0.854572\pi\)
\(594\) −92.5997 −3.79941
\(595\) −0.469712 −0.0192563
\(596\) 9.54075i 0.390804i
\(597\) 15.7158 0.643206
\(598\) −15.3657 + 8.92896i −0.628349 + 0.365132i
\(599\) 1.89091 0.0772607 0.0386303 0.999254i \(-0.487701\pi\)
0.0386303 + 0.999254i \(0.487701\pi\)
\(600\) 16.0598i 0.655638i
\(601\) −2.35016 −0.0958651 −0.0479325 0.998851i \(-0.515263\pi\)
−0.0479325 + 0.998851i \(0.515263\pi\)
\(602\) 3.24612 0.132302
\(603\) 70.7973i 2.88309i
\(604\) 2.75388i 0.112054i
\(605\) 8.02678i 0.326335i
\(606\) 11.3987i 0.463039i
\(607\) −28.3502 −1.15070 −0.575349 0.817908i \(-0.695134\pi\)
−0.575349 + 0.817908i \(0.695134\pi\)
\(608\) −1.62306 −0.0658238
\(609\) 15.2461i 0.617804i
\(610\) −2.00000 −0.0809776
\(611\) −7.22359 + 4.19761i −0.292235 + 0.169817i
\(612\) 9.88045 0.399393
\(613\) 21.3101i 0.860709i 0.902660 + 0.430354i \(0.141611\pi\)
−0.902660 + 0.430354i \(0.858389\pi\)
\(614\) −30.9662 −1.24969
\(615\) −1.33465 −0.0538182
\(616\) 5.68284i 0.228968i
\(617\) 7.85792i 0.316348i 0.987411 + 0.158174i \(0.0505607\pi\)
−0.987411 + 0.158174i \(0.949439\pi\)
\(618\) 23.9549i 0.963609i
\(619\) 32.3544i 1.30043i 0.759749 + 0.650217i \(0.225322\pi\)
−0.759749 + 0.650217i \(0.774678\pi\)
\(620\) −2.14208 −0.0860281
\(621\) 80.3156 3.22295
\(622\) 9.50776i 0.381226i
\(623\) 9.24612 0.370438
\(624\) 5.98873 + 10.3059i 0.239741 + 0.412566i
\(625\) 22.8889 0.915558
\(626\) 3.38820i 0.135420i
\(627\) −30.4922 −1.21774
\(628\) −22.5295 −0.899024
\(629\) 8.63433i 0.344273i
\(630\) 2.98873i 0.119074i
\(631\) 27.9549i 1.11287i 0.830892 + 0.556434i \(0.187831\pi\)
−0.830892 + 0.556434i \(0.812169\pi\)
\(632\) 2.17508i 0.0865201i
\(633\) −91.6257 −3.64179
\(634\) 29.5408 1.17321
\(635\) 3.12657i 0.124074i
\(636\) −19.8354 −0.786524
\(637\) 1.81153 + 3.11743i 0.0717755 + 0.123517i
\(638\) −26.2081 −1.03759
\(639\) 104.849i 4.14777i
\(640\) 0.376939 0.0148998
\(641\) 15.0260 0.593490 0.296745 0.954957i \(-0.404099\pi\)
0.296745 + 0.954957i \(0.404099\pi\)
\(642\) 32.5893i 1.28620i
\(643\) 9.27290i 0.365687i −0.983142 0.182844i \(-0.941470\pi\)
0.983142 0.182844i \(-0.0585302\pi\)
\(644\) 4.92896i 0.194228i
\(645\) 4.04506i 0.159274i
\(646\) 2.02253 0.0795754
\(647\) 20.1196 0.790981 0.395491 0.918470i \(-0.370575\pi\)
0.395491 + 0.918470i \(0.370575\pi\)
\(648\) 30.0815i 1.18171i
\(649\) −65.2445 −2.56107
\(650\) 15.1442 8.80026i 0.594005 0.345175i
\(651\) 18.7869 0.736316
\(652\) 8.46971i 0.331700i
\(653\) 25.3121 0.990540 0.495270 0.868739i \(-0.335069\pi\)
0.495270 + 0.868739i \(0.335069\pi\)
\(654\) −37.1040 −1.45088
\(655\) 6.16461i 0.240871i
\(656\) 1.07104i 0.0418171i
\(657\) 2.51478i 0.0981107i
\(658\) 2.31716i 0.0903324i
\(659\) −15.2461 −0.593905 −0.296952 0.954892i \(-0.595970\pi\)
−0.296952 + 0.954892i \(0.595970\pi\)
\(660\) 7.08151 0.275647
\(661\) 29.4359i 1.14492i −0.819931 0.572462i \(-0.805988\pi\)
0.819931 0.572462i \(-0.194012\pi\)
\(662\) −0.175080 −0.00680469
\(663\) −7.46269 12.8424i −0.289827 0.498758i
\(664\) 9.74261 0.378087
\(665\) 0.611795i 0.0237244i
\(666\) 54.9394 2.12886
\(667\) 22.7313 0.880161
\(668\) 5.97747i 0.231275i
\(669\) 27.4212i 1.06016i
\(670\) 3.36567i 0.130027i
\(671\) 30.1525i 1.16403i
\(672\) −3.30590 −0.127528
\(673\) 26.6448 1.02708 0.513541 0.858065i \(-0.328334\pi\)
0.513541 + 0.858065i \(0.328334\pi\)
\(674\) 19.3761i 0.746341i
\(675\) −79.1580 −3.04679
\(676\) 6.43671 11.2946i 0.247566 0.434409i
\(677\) 39.1188 1.50346 0.751728 0.659473i \(-0.229221\pi\)
0.751728 + 0.659473i \(0.229221\pi\)
\(678\) 16.2946i 0.625792i
\(679\) −10.9290 −0.419415
\(680\) −0.469712 −0.0180126
\(681\) 0.776410i 0.0297521i
\(682\) 32.2946i 1.23663i
\(683\) 12.0105i 0.459568i 0.973242 + 0.229784i \(0.0738019\pi\)
−0.973242 + 0.229784i \(0.926198\pi\)
\(684\) 12.8692i 0.492066i
\(685\) 4.98449 0.190447
\(686\) −1.00000 −0.0381802
\(687\) 64.3276i 2.45425i
\(688\) 3.24612 0.123757
\(689\) 10.8692 + 18.7046i 0.414083 + 0.712587i
\(690\) −6.14208 −0.233825
\(691\) 50.2123i 1.91017i −0.296337 0.955083i \(-0.595765\pi\)
0.296337 0.955083i \(-0.404235\pi\)
\(692\) 0.846651 0.0321848
\(693\) −45.0590 −1.71165
\(694\) 24.4697i 0.928858i
\(695\) 0.611795i 0.0232067i
\(696\) 15.2461i 0.577903i
\(697\) 1.33465i 0.0505534i
\(698\) −11.8622 −0.448990
\(699\) −66.6223 −2.51989
\(700\) 4.85792i 0.183612i
\(701\) 31.6933 1.19704 0.598520 0.801108i \(-0.295756\pi\)
0.598520 + 0.801108i \(0.295756\pi\)
\(702\) −50.7973 + 29.5182i −1.91722 + 1.11409i
\(703\) 11.2461 0.424156
\(704\) 5.68284i 0.214180i
\(705\) −2.88747 −0.108748
\(706\) 1.82492 0.0686818
\(707\) 3.44798i 0.129675i
\(708\) 37.9549i 1.42643i
\(709\) 10.6448i 0.399774i 0.979819 + 0.199887i \(0.0640574\pi\)
−0.979819 + 0.199887i \(0.935943\pi\)
\(710\) 4.98449i 0.187064i
\(711\) 17.2461 0.646780
\(712\) 9.24612 0.346513
\(713\) 28.0105i 1.04900i
\(714\) 4.11955 0.154170
\(715\) −3.88045 6.67779i −0.145121 0.249735i
\(716\) 18.7313 0.700023
\(717\) 42.8509i 1.60030i
\(718\) 7.62731 0.284649
\(719\) −19.5303 −0.728357 −0.364178 0.931329i \(-0.618650\pi\)
−0.364178 + 0.931329i \(0.618650\pi\)
\(720\) 2.98873i 0.111384i
\(721\) 7.24612i 0.269860i
\(722\) 16.3657i 0.609067i
\(723\) 28.8649i 1.07350i
\(724\) 17.6561 0.656182
\(725\) −22.4037 −0.832053
\(726\) 70.3979i 2.61271i
\(727\) −29.1040 −1.07941 −0.539705 0.841855i \(-0.681464\pi\)
−0.539705 + 0.841855i \(0.681464\pi\)
\(728\) 1.81153 + 3.11743i 0.0671398 + 0.115540i
\(729\) 76.9099 2.84851
\(730\) 0.119551i 0.00442479i
\(731\) −4.04506 −0.149612
\(732\) 17.5408 0.648325
\(733\) 43.9282i 1.62252i −0.584683 0.811262i \(-0.698781\pi\)
0.584683 0.811262i \(-0.301219\pi\)
\(734\) 17.2236i 0.635734i
\(735\) 1.24612i 0.0459639i
\(736\) 4.92896i 0.181684i
\(737\) 50.7418 1.86910
\(738\) 8.49224 0.312604
\(739\) 43.4852i 1.59963i −0.600247 0.799815i \(-0.704931\pi\)
0.600247 0.799815i \(-0.295069\pi\)
\(740\) −2.61180 −0.0960115
\(741\) −16.7271 + 9.72008i −0.614485 + 0.357076i
\(742\) −6.00000 −0.220267
\(743\) 30.4697i 1.11783i −0.829227 0.558913i \(-0.811219\pi\)
0.829227 0.558913i \(-0.188781\pi\)
\(744\) 18.7869 0.688760
\(745\) 3.59628 0.131758
\(746\) 8.77641i 0.321327i
\(747\) 77.2488i 2.82638i
\(748\) 7.08151i 0.258926i
\(749\) 9.85792i 0.360200i
\(750\) 12.2842 0.448554
\(751\) −11.6603 −0.425491 −0.212745 0.977108i \(-0.568240\pi\)
−0.212745 + 0.977108i \(0.568240\pi\)
\(752\) 2.31716i 0.0844983i
\(753\) −16.6758 −0.607701
\(754\) −14.3769 + 8.35441i −0.523577 + 0.304250i
\(755\) −1.03804 −0.0377783
\(756\) 16.2946i 0.592630i
\(757\) −8.02253 −0.291584 −0.145792 0.989315i \(-0.546573\pi\)
−0.145792 + 0.989315i \(0.546573\pi\)
\(758\) −17.7384 −0.644286
\(759\) 92.5997i 3.36116i
\(760\) 0.611795i 0.0221921i
\(761\) 0.831939i 0.0301578i 0.999886 + 0.0150789i \(0.00479994\pi\)
−0.999886 + 0.0150789i \(0.995200\pi\)
\(762\) 27.4212i 0.993365i
\(763\) −11.2236 −0.406321
\(764\) −16.6118 −0.600994
\(765\) 3.72433i 0.134653i
\(766\) 32.7643 1.18382
\(767\) −35.7911 + 20.7981i −1.29234 + 0.750977i
\(768\) −3.30590 −0.119291
\(769\) 21.0710i 0.759841i −0.925019 0.379921i \(-0.875951\pi\)
0.925019 0.379921i \(-0.124049\pi\)
\(770\) 2.14208 0.0771953
\(771\) −76.7748 −2.76498
\(772\) 3.85792i 0.138849i
\(773\) 4.84665i 0.174322i 0.996194 + 0.0871610i \(0.0277794\pi\)
−0.996194 + 0.0871610i \(0.972221\pi\)
\(774\) 25.7384i 0.925146i
\(775\) 27.6067i 0.991664i
\(776\) −10.9290 −0.392327
\(777\) 22.9064 0.821763
\(778\) 12.2616i 0.439601i
\(779\) 1.73837 0.0622834
\(780\) 3.88470 2.25739i 0.139094 0.0808274i
\(781\) 75.1475 2.68899
\(782\) 6.14208i 0.219640i
\(783\) 75.1475 2.68555
\(784\) −1.00000 −0.0357143
\(785\) 8.49224i 0.303101i
\(786\) 54.0660i 1.92847i
\(787\) 35.6005i 1.26902i −0.772914 0.634511i \(-0.781202\pi\)
0.772914 0.634511i \(-0.218798\pi\)
\(788\) 6.17508i 0.219978i
\(789\) 36.7088 1.30687
\(790\) −0.819873 −0.0291698
\(791\) 4.92896i 0.175254i
\(792\) −45.0590 −1.60110
\(793\) −9.61180 16.5408i −0.341325 0.587379i
\(794\) 22.5850 0.801512
\(795\) 7.47673i 0.265172i
\(796\) 4.75388 0.168497
\(797\) 24.5520 0.869677 0.434839 0.900508i \(-0.356805\pi\)
0.434839 + 0.900508i \(0.356805\pi\)
\(798\) 5.36567i 0.189943i
\(799\) 2.88747i 0.102151i
\(800\) 4.85792i 0.171753i
\(801\) 73.3121i 2.59036i
\(802\) −27.8579 −0.983697
\(803\) 1.80239 0.0636049
\(804\) 29.5182i 1.04103i
\(805\) −1.85792 −0.0654830
\(806\) −10.2946 17.7158i −0.362613 0.624014i
\(807\) −38.2411 −1.34615
\(808\) 3.44798i 0.121300i
\(809\) 38.0970 1.33942 0.669710 0.742623i \(-0.266418\pi\)
0.669710 + 0.742623i \(0.266418\pi\)
\(810\) −11.3389 −0.398408
\(811\) 36.3009i 1.27470i −0.770576 0.637348i \(-0.780032\pi\)
0.770576 0.637348i \(-0.219968\pi\)
\(812\) 4.61180i 0.161842i
\(813\) 86.4576i 3.03220i
\(814\) 39.3761i 1.38013i
\(815\) −3.19257 −0.111831
\(816\) 4.11955 0.144213
\(817\) 5.26865i 0.184327i
\(818\) −16.7313 −0.584998
\(819\) −24.7180 + 14.3635i −0.863715 + 0.501903i
\(820\) −0.403717 −0.0140984
\(821\) 34.4697i 1.20300i −0.798872 0.601501i \(-0.794570\pi\)
0.798872 0.601501i \(-0.205430\pi\)
\(822\) −43.7158 −1.52476
\(823\) −3.04851 −0.106264 −0.0531322 0.998587i \(-0.516920\pi\)
−0.0531322 + 0.998587i \(0.516920\pi\)
\(824\) 7.24612i 0.252431i
\(825\) 91.2651i 3.17744i
\(826\) 11.4810i 0.399474i
\(827\) 23.6708i 0.823113i 0.911384 + 0.411557i \(0.135015\pi\)
−0.911384 + 0.411557i \(0.864985\pi\)
\(828\) 39.0815 1.35818
\(829\) −9.83114 −0.341450 −0.170725 0.985319i \(-0.554611\pi\)
−0.170725 + 0.985319i \(0.554611\pi\)
\(830\) 3.67237i 0.127470i
\(831\) 76.7748 2.66329
\(832\) 1.81153 + 3.11743i 0.0628035 + 0.108077i
\(833\) 1.24612 0.0431756
\(834\) 5.36567i 0.185798i
\(835\) 2.25314 0.0779732
\(836\) −9.22359 −0.319005
\(837\) 92.5997i 3.20071i
\(838\) 11.7756i 0.406782i
\(839\) 25.6828i 0.886670i −0.896356 0.443335i \(-0.853795\pi\)
0.896356 0.443335i \(-0.146205\pi\)
\(840\) 1.24612i 0.0429953i
\(841\) −7.73135 −0.266598
\(842\) −12.3172 −0.424477
\(843\) 56.9394i 1.96110i
\(844\) −27.7158 −0.954018
\(845\) −4.25739 2.42625i −0.146459 0.0834655i
\(846\) 18.3727 0.631666
\(847\) 21.2946i 0.731692i
\(848\) −6.00000 −0.206041
\(849\) −65.3761 −2.24370
\(850\) 6.05356i 0.207635i
\(851\) 34.1525i 1.17073i
\(852\) 43.7158i 1.49768i
\(853\) 23.1743i 0.793472i −0.917933 0.396736i \(-0.870143\pi\)
0.917933 0.396736i \(-0.129857\pi\)
\(854\) 5.30590 0.181564
\(855\) −4.85090 −0.165897
\(856\) 9.85792i 0.336937i
\(857\) 26.8199 0.916149 0.458075 0.888914i \(-0.348539\pi\)
0.458075 + 0.888914i \(0.348539\pi\)
\(858\) 34.0330 + 58.5667i 1.16187 + 1.99944i
\(859\) 11.7756 0.401779 0.200889 0.979614i \(-0.435617\pi\)
0.200889 + 0.979614i \(0.435617\pi\)
\(860\) 1.22359i 0.0417241i
\(861\) 3.54075 0.120669
\(862\) −0.611795 −0.0208378
\(863\) 8.91849i 0.303589i 0.988412 + 0.151795i \(0.0485052\pi\)
−0.988412 + 0.151795i \(0.951495\pi\)
\(864\) 16.2946i 0.554355i
\(865\) 0.319136i 0.0108509i
\(866\) 25.2011i 0.856367i
\(867\) 51.0668 1.73432
\(868\) 5.68284 0.192888
\(869\) 12.3606i 0.419306i
\(870\) −5.74686 −0.194837
\(871\) 27.8354 16.1751i 0.943166 0.548072i
\(872\) −11.2236 −0.380079
\(873\) 86.6553i 2.93284i
\(874\) 8.00000 0.270604
\(875\) 3.71583 0.125618
\(876\) 1.04851i 0.0354259i
\(877\) 34.2496i 1.15653i 0.815851 + 0.578263i \(0.196269\pi\)
−0.815851 + 0.578263i \(0.803731\pi\)
\(878\) 36.9394i 1.24665i
\(879\) 3.73837i 0.126092i
\(880\) 2.14208 0.0722096
\(881\) −1.41074 −0.0475289 −0.0237645 0.999718i \(-0.507565\pi\)
−0.0237645 + 0.999718i \(0.507565\pi\)
\(882\) 7.92896i 0.266982i
\(883\) −13.5078 −0.454572 −0.227286 0.973828i \(-0.572985\pi\)
−0.227286 + 0.973828i \(0.572985\pi\)
\(884\) −2.25739 3.88470i −0.0759242 0.130656i
\(885\) −14.3067 −0.480914
\(886\) 2.77641i 0.0932753i
\(887\) −10.2616 −0.344552 −0.172276 0.985049i \(-0.555112\pi\)
−0.172276 + 0.985049i \(0.555112\pi\)
\(888\) 22.9064 0.768689
\(889\) 8.29463i 0.278193i
\(890\) 3.48522i 0.116825i
\(891\) 170.948i 5.72698i
\(892\) 8.29463i 0.277725i
\(893\) 3.76090 0.125854
\(894\) −31.5408 −1.05488
\(895\) 7.06058i 0.236009i
\(896\) −1.00000 −0.0334077
\(897\) −29.5182 50.7973i −0.985585 1.69607i
\(898\) 4.35016 0.145167
\(899\) 26.2081i 0.874088i
\(900\) −38.5182 −1.28394
\(901\) 7.47673 0.249086
\(902\) 6.08655i 0.202660i
\(903\) 10.7313i 0.357117i
\(904\) 4.92896i 0.163935i
\(905\) 6.65526i 0.221228i
\(906\) 9.10404 0.302461
\(907\) 47.9549 1.59232 0.796159 0.605088i \(-0.206862\pi\)
0.796159 + 0.605088i \(0.206862\pi\)
\(908\) 0.234856i 0.00779397i
\(909\) −27.3389 −0.906774
\(910\) 1.17508 0.682837i 0.0389535 0.0226358i
\(911\) −23.4317 −0.776326 −0.388163 0.921591i \(-0.626890\pi\)
−0.388163 + 0.921591i \(0.626890\pi\)
\(912\) 5.36567i 0.177675i
\(913\) 55.3657 1.83234
\(914\) 29.6048 0.979239
\(915\) 6.61180i 0.218579i
\(916\) 19.4584i 0.642925i
\(917\) 16.3544i 0.540070i
\(918\) 20.3051i 0.670168i
\(919\) −41.2566 −1.36093 −0.680465 0.732781i \(-0.738222\pi\)
−0.680465 + 0.732781i \(0.738222\pi\)
\(920\) −1.85792 −0.0612537
\(921\) 102.371i 3.37324i
\(922\) −30.2349 −0.995732
\(923\) 41.2236 23.9549i 1.35689 0.788486i
\(924\) −18.7869 −0.618043
\(925\) 33.6603i 1.10674i
\(926\) 4.87343 0.160151
\(927\) 57.4542 1.88704
\(928\) 4.61180i 0.151390i
\(929\) 51.5842i 1.69242i 0.532847 + 0.846212i \(0.321122\pi\)
−0.532847 + 0.846212i \(0.678878\pi\)
\(930\) 7.08151i 0.232212i
\(931\) 1.62306i 0.0531937i
\(932\) −20.1525 −0.660119
\(933\) 31.4317 1.02903
\(934\) 15.8847i 0.519763i
\(935\) −2.66930 −0.0872953
\(936\) −24.7180 + 14.3635i −0.807932 + 0.469487i
\(937\) 2.28417 0.0746205 0.0373102 0.999304i \(-0.488121\pi\)
0.0373102 + 0.999304i \(0.488121\pi\)
\(938\) 8.92896i 0.291541i
\(939\) −11.2011 −0.365533
\(940\) −0.873429 −0.0284881
\(941\) 6.51902i 0.212514i −0.994339 0.106257i \(-0.966113\pi\)
0.994339 0.106257i \(-0.0338866\pi\)
\(942\) 74.4802i 2.42670i
\(943\) 5.27912i 0.171912i
\(944\) 11.4810i 0.373674i
\(945\) −6.14208 −0.199802
\(946\) 18.4472 0.599770
\(947\) 23.9464i 0.778155i −0.921205 0.389077i \(-0.872794\pi\)
0.921205 0.389077i \(-0.127206\pi\)
\(948\) 7.19059 0.233540
\(949\) 0.988734 0.574551i 0.0320957 0.0186507i
\(950\) −7.88470 −0.255813
\(951\) 97.6587i 3.16680i
\(952\) 1.24612 0.0403870
\(953\) −6.28417 −0.203564 −0.101782 0.994807i \(-0.532454\pi\)
−0.101782 + 0.994807i \(0.532454\pi\)
\(954\) 47.5738i 1.54026i
\(955\) 6.26163i 0.202622i
\(956\) 12.9620i 0.419220i
\(957\) 86.6412i 2.80071i
\(958\) −3.53029 −0.114058
\(959\) −13.2236 −0.427012
\(960\) 1.24612i 0.0402184i
\(961\) −1.29463 −0.0417623
\(962\) −12.5520 21.6005i −0.404693 0.696429i
\(963\) −78.1630 −2.51877
\(964\) 8.73135i 0.281218i
\(965\) −1.45420 −0.0468123
\(966\) 16.2946 0.524271
\(967\) 57.2671i 1.84158i −0.390054 0.920792i \(-0.627544\pi\)
0.390054 0.920792i \(-0.372456\pi\)
\(968\) 21.2946i 0.684435i
\(969\) 6.68628i 0.214794i
\(970\) 4.11955i 0.132271i
\(971\) −49.1188 −1.57630 −0.788148 0.615486i \(-0.788960\pi\)
−0.788148 + 0.615486i \(0.788960\pi\)
\(972\) 50.5625 1.62179
\(973\) 1.62306i 0.0520329i
\(974\) 16.6118 0.532276
\(975\) 29.0928 + 50.0652i 0.931714 + 1.60337i
\(976\) 5.30590 0.169838
\(977\) 12.0660i 0.386025i 0.981196 + 0.193013i \(0.0618259\pi\)
−0.981196 + 0.193013i \(0.938174\pi\)
\(978\) 28.0000 0.895341
\(979\) 52.5442 1.67932
\(980\) 0.376939i 0.0120409i
\(981\) 88.9914i 2.84128i
\(982\) 10.3812i 0.331277i
\(983\) 54.2166i 1.72924i 0.502426 + 0.864620i \(0.332441\pi\)
−0.502426 + 0.864620i \(0.667559\pi\)
\(984\) 3.54075 0.112875
\(985\) −2.32763 −0.0741644
\(986\) 5.74686i 0.183017i
\(987\) 7.66030 0.243830
\(988\) −5.05978 + 2.94022i −0.160973 + 0.0935410i
\(989\) −16.0000 −0.508770
\(990\) 16.9845i 0.539802i
\(991\) 38.1751 1.21267 0.606336 0.795209i \(-0.292639\pi\)
0.606336 + 0.795209i \(0.292639\pi\)
\(992\) 5.68284 0.180430
\(993\) 0.578798i 0.0183676i
\(994\) 13.2236i 0.419427i
\(995\) 1.79192i 0.0568078i
\(996\) 32.2081i 1.02055i
\(997\) 6.05978 0.191915 0.0959575 0.995385i \(-0.469409\pi\)
0.0959575 + 0.995385i \(0.469409\pi\)
\(998\) −9.80239 −0.310289
\(999\) 112.905i 3.57215i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 182.2.d.b.155.4 yes 6
3.2 odd 2 1638.2.c.i.883.2 6
4.3 odd 2 1456.2.k.b.337.6 6
7.2 even 3 1274.2.n.m.753.6 12
7.3 odd 6 1274.2.n.n.961.1 12
7.4 even 3 1274.2.n.m.961.3 12
7.5 odd 6 1274.2.n.n.753.4 12
7.6 odd 2 1274.2.d.l.883.6 6
13.5 odd 4 2366.2.a.bc.1.1 3
13.8 odd 4 2366.2.a.x.1.1 3
13.12 even 2 inner 182.2.d.b.155.1 6
39.38 odd 2 1638.2.c.i.883.5 6
52.51 odd 2 1456.2.k.b.337.5 6
91.12 odd 6 1274.2.n.n.753.1 12
91.25 even 6 1274.2.n.m.961.6 12
91.38 odd 6 1274.2.n.n.961.4 12
91.51 even 6 1274.2.n.m.753.3 12
91.90 odd 2 1274.2.d.l.883.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.d.b.155.1 6 13.12 even 2 inner
182.2.d.b.155.4 yes 6 1.1 even 1 trivial
1274.2.d.l.883.3 6 91.90 odd 2
1274.2.d.l.883.6 6 7.6 odd 2
1274.2.n.m.753.3 12 91.51 even 6
1274.2.n.m.753.6 12 7.2 even 3
1274.2.n.m.961.3 12 7.4 even 3
1274.2.n.m.961.6 12 91.25 even 6
1274.2.n.n.753.1 12 91.12 odd 6
1274.2.n.n.753.4 12 7.5 odd 6
1274.2.n.n.961.1 12 7.3 odd 6
1274.2.n.n.961.4 12 91.38 odd 6
1456.2.k.b.337.5 6 52.51 odd 2
1456.2.k.b.337.6 6 4.3 odd 2
1638.2.c.i.883.2 6 3.2 odd 2
1638.2.c.i.883.5 6 39.38 odd 2
2366.2.a.x.1.1 3 13.8 odd 4
2366.2.a.bc.1.1 3 13.5 odd 4