| L(s) = 1 | + (−0.978 − 0.207i)2-s + (0.913 + 0.406i)4-s + (−0.809 − 0.587i)8-s + (−0.669 + 0.743i)11-s + (0.309 − 0.951i)13-s + (0.669 + 0.743i)16-s + (0.104 − 0.994i)17-s + (−0.913 + 0.406i)19-s + (0.809 − 0.587i)22-s + (−0.978 − 0.207i)23-s + (−0.5 + 0.866i)26-s + (0.809 − 0.587i)29-s + (0.104 − 0.994i)31-s + (−0.5 − 0.866i)32-s + (−0.309 + 0.951i)34-s + ⋯ |
| L(s) = 1 | + (−0.978 − 0.207i)2-s + (0.913 + 0.406i)4-s + (−0.809 − 0.587i)8-s + (−0.669 + 0.743i)11-s + (0.309 − 0.951i)13-s + (0.669 + 0.743i)16-s + (0.104 − 0.994i)17-s + (−0.913 + 0.406i)19-s + (0.809 − 0.587i)22-s + (−0.978 − 0.207i)23-s + (−0.5 + 0.866i)26-s + (0.809 − 0.587i)29-s + (0.104 − 0.994i)31-s + (−0.5 − 0.866i)32-s + (−0.309 + 0.951i)34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.307 - 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.307 - 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3216674656 - 0.4422317816i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3216674656 - 0.4422317816i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5914371324 - 0.1458682298i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5914371324 - 0.1458682298i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
| good | 2 | \( 1 + (-0.978 - 0.207i)T \) |
| 11 | \( 1 + (-0.669 + 0.743i)T \) |
| 13 | \( 1 + (0.309 - 0.951i)T \) |
| 17 | \( 1 + (0.104 - 0.994i)T \) |
| 19 | \( 1 + (-0.913 + 0.406i)T \) |
| 23 | \( 1 + (-0.978 - 0.207i)T \) |
| 29 | \( 1 + (0.809 - 0.587i)T \) |
| 31 | \( 1 + (0.104 - 0.994i)T \) |
| 37 | \( 1 + (-0.669 - 0.743i)T \) |
| 41 | \( 1 + (0.309 - 0.951i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (0.104 + 0.994i)T \) |
| 53 | \( 1 + (0.913 + 0.406i)T \) |
| 59 | \( 1 + (-0.978 + 0.207i)T \) |
| 61 | \( 1 + (0.978 + 0.207i)T \) |
| 67 | \( 1 + (0.104 - 0.994i)T \) |
| 71 | \( 1 + (0.809 - 0.587i)T \) |
| 73 | \( 1 + (0.669 - 0.743i)T \) |
| 79 | \( 1 + (-0.104 - 0.994i)T \) |
| 83 | \( 1 + (0.809 + 0.587i)T \) |
| 89 | \( 1 + (-0.978 - 0.207i)T \) |
| 97 | \( 1 + (-0.809 + 0.587i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.75038297518856847065100009918, −23.420824028755289041235587147637, −21.51414470706348994795804048001, −21.48400631411565964012890927235, −20.1358238390083980423775587976, −19.404704812262030451122265323326, −18.683659716211457135081979119939, −17.90815491537978196633775243804, −16.96868380664136359693939834425, −16.25145439121199390106957055924, −15.50264079307210236406017167429, −14.52790959210752672972553529481, −13.57512647476069058050819192009, −12.37732494543056637694396824179, −11.40530570044435625771247866441, −10.599969699193492119717226639319, −9.85635736821304371838826491376, −8.490221398447010863295060094633, −8.37497739375785888129533863103, −6.90675193716501422921990704685, −6.260334152713458328021815408614, −5.143680411861926433529473651004, −3.68412971188905003005616776991, −2.42269408125341784294242450980, −1.34210262640929597889298419121,
0.40416326615022342332065930809, 1.964295584724608248881324092671, 2.82213493016333740106045097591, 4.11006719159472851646683862627, 5.507350588667137499073072980869, 6.54586456449986923336417561664, 7.64757238424943102592674806320, 8.202293352998113292771577837511, 9.350693240579230932771114117498, 10.20329023327027442858727381433, 10.81150793733866923414579209250, 12.00470943358304390954847035603, 12.63028283179929754733045041433, 13.75209268488205622279720397245, 15.087876084471035958593703908689, 15.683480916495290868688829889932, 16.56331923566204621717249194409, 17.580827391990428015297175939851, 18.11793394529846683389910864468, 18.93772899149767171766916212537, 19.90913753046582519973235884647, 20.63200067514573456238495660547, 21.19847449955291969064351812505, 22.44036197566749832897576574717, 23.224993796116007397712824391904