# Properties

 Label 525.59 Modulus $525$ Conductor $525$ Order $30$ Real no Primitive yes Minimal yes Parity even

# Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(525)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([15,21,5]))

pari: [g,chi] = znchar(Mod(59,525))

## Basic properties

 Modulus: $$525$$ Conductor: $$525$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$30$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 525.bp

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(176,127,451)$$ → $$(-1,e\left(\frac{7}{10}\right),e\left(\frac{1}{6}\right))$$

## Values

 $$-1$$ $$1$$ $$2$$ $$4$$ $$8$$ $$11$$ $$13$$ $$16$$ $$17$$ $$19$$ $$22$$ $$23$$ $$1$$ $$1$$ $$e\left(\frac{8}{15}\right)$$ $$e\left(\frac{1}{15}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{11}{30}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{2}{15}\right)$$ $$e\left(\frac{23}{30}\right)$$ $$e\left(\frac{13}{30}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{8}{15}\right)$$
 value at e.g. 2

## Related number fields

 Field of values: $$\Q(\zeta_{15})$$ Fixed field: 30.30.8545550446904128178068956933177702239845530129969120025634765625.1

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 525 }(59,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{525}(59,\cdot)) = \sum_{r\in \Z/525\Z} \chi_{525}(59,r) e\left(\frac{2r}{525}\right) = 11.4348690201+19.8555727818i$$

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 525 }(59,·),\chi_{ 525 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{525}(59,\cdot),\chi_{525}(1,\cdot)) = \sum_{r\in \Z/525\Z} \chi_{525}(59,r) \chi_{525}(1,1-r) = 0$$

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 525 }(59,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{525}(59,·)) = \sum_{r \in \Z/525\Z} \chi_{525}(59,r) e\left(\frac{1 r + 2 r^{-1}}{525}\right) = -0.0$$