| L(s) = 1 | + (0.928 − 0.371i)5-s + (0.235 − 0.971i)11-s + (0.415 − 0.909i)13-s + (−0.0475 − 0.998i)17-s + (0.0475 − 0.998i)19-s + (0.723 − 0.690i)25-s + (0.841 − 0.540i)29-s + (0.981 − 0.189i)31-s + (−0.786 + 0.618i)37-s + (−0.142 + 0.989i)41-s + (0.654 − 0.755i)43-s + (0.5 + 0.866i)47-s + (0.995 + 0.0950i)53-s + (−0.142 − 0.989i)55-s + (0.580 + 0.814i)59-s + ⋯ |
| L(s) = 1 | + (0.928 − 0.371i)5-s + (0.235 − 0.971i)11-s + (0.415 − 0.909i)13-s + (−0.0475 − 0.998i)17-s + (0.0475 − 0.998i)19-s + (0.723 − 0.690i)25-s + (0.841 − 0.540i)29-s + (0.981 − 0.189i)31-s + (−0.786 + 0.618i)37-s + (−0.142 + 0.989i)41-s + (0.654 − 0.755i)43-s + (0.5 + 0.866i)47-s + (0.995 + 0.0950i)53-s + (−0.142 − 0.989i)55-s + (0.580 + 0.814i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3864 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0452 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3864 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0452 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.567910150 - 1.640523357i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.567910150 - 1.640523357i\) |
| \(L(1)\) |
\(\approx\) |
\(1.281353639 - 0.4187943523i\) |
| \(L(1)\) |
\(\approx\) |
\(1.281353639 - 0.4187943523i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
| 23 | \( 1 \) |
| good | 5 | \( 1 + (0.928 - 0.371i)T \) |
| 11 | \( 1 + (0.235 - 0.971i)T \) |
| 13 | \( 1 + (0.415 - 0.909i)T \) |
| 17 | \( 1 + (-0.0475 - 0.998i)T \) |
| 19 | \( 1 + (0.0475 - 0.998i)T \) |
| 29 | \( 1 + (0.841 - 0.540i)T \) |
| 31 | \( 1 + (0.981 - 0.189i)T \) |
| 37 | \( 1 + (-0.786 + 0.618i)T \) |
| 41 | \( 1 + (-0.142 + 0.989i)T \) |
| 43 | \( 1 + (0.654 - 0.755i)T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (0.995 + 0.0950i)T \) |
| 59 | \( 1 + (0.580 + 0.814i)T \) |
| 61 | \( 1 + (0.327 - 0.945i)T \) |
| 67 | \( 1 + (-0.723 + 0.690i)T \) |
| 71 | \( 1 + (-0.959 - 0.281i)T \) |
| 73 | \( 1 + (0.888 - 0.458i)T \) |
| 79 | \( 1 + (-0.995 + 0.0950i)T \) |
| 83 | \( 1 + (0.142 + 0.989i)T \) |
| 89 | \( 1 + (-0.981 - 0.189i)T \) |
| 97 | \( 1 + (-0.142 + 0.989i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.76360808845531452126039175807, −17.86242575106267583242959738276, −17.51425053060907328232556006879, −16.77542888817747625831731806498, −16.073111156907739718471858974659, −15.19739007376617813825729490985, −14.52026026751540239611612796196, −14.0291357700723103160040634829, −13.3409995424679850604341850105, −12.45770084145401201814289936531, −12.017594032257125523174147172519, −10.98249285102008429546501887062, −10.275663612747746605425446303535, −9.880614664120456326819516151479, −8.94902604724704643567892503814, −8.42356400434010281932134350245, −7.275901376230724403965222606792, −6.73533858349750116518685486336, −6.040110596173994019933022020075, −5.34240202024101927888221009425, −4.34645102487615460177206068261, −3.72973450220409898534039974602, −2.64408205975009561001027254722, −1.84590306257274140571611164061, −1.32388505665883387974926201500,
0.68102555715886304662833825889, 1.241543804363296256737619982041, 2.63635628727811640681646840016, 2.874629908402212260077181394183, 4.09900655730321613252811078768, 4.971345785614896746550196138593, 5.58373368088702511684317672836, 6.288676550297548221300805243204, 6.96164858666285888170414759158, 8.03893613912937771558194858550, 8.65443720853316161259199872982, 9.278661979509371601625016751991, 10.055118633040030845007861178339, 10.68346998751237486982885623934, 11.491479199405641782057620118804, 12.166298248680110524232419195625, 13.095984010499291128885214969230, 13.67954954631139471609704729624, 13.93019393159261768708532316445, 15.01838462275526580740928759507, 15.76798309606819225707078460729, 16.288058035329607248048798355311, 17.16981258082589674057835950802, 17.624072142572946243985628764862, 18.26209982993503982078470814747